

FOR CLINICAL
NUTRITION AND
METABOLISM

ESPEN LLL Course Topic 18 - Nutritional Support in Intensive Care Unit Patients

Protein Needs and Optimal Administration

Module 18.2

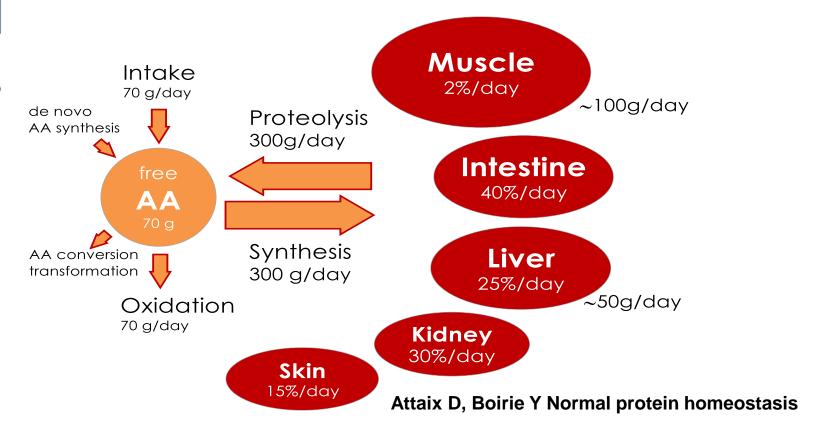
Pierre Singer, MD

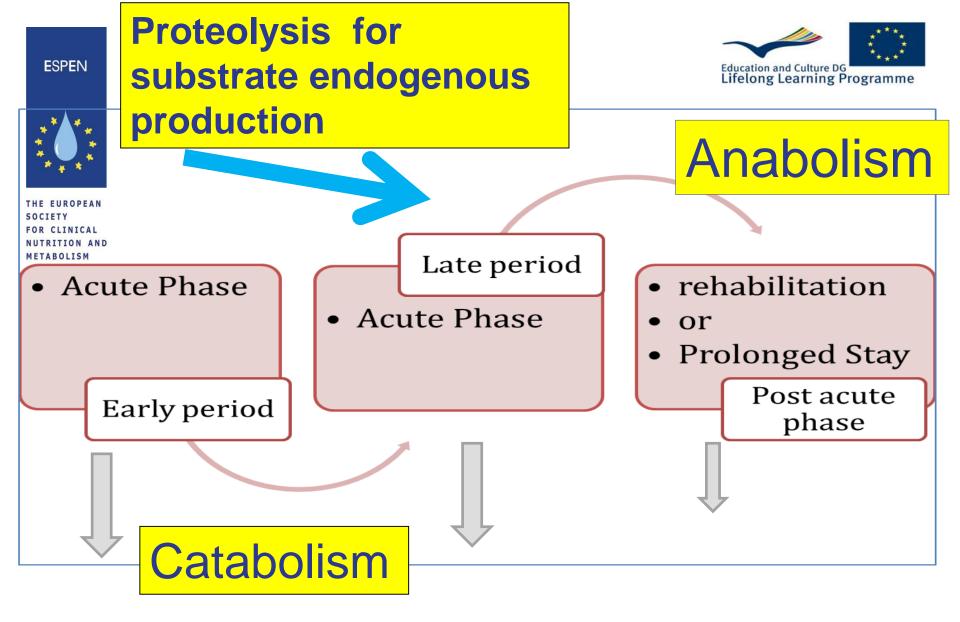
Critical Care Department and Institute for Nutrition Research
Rabin Medical Center, Beilinson Hospital
Tel Aviv University, Israel

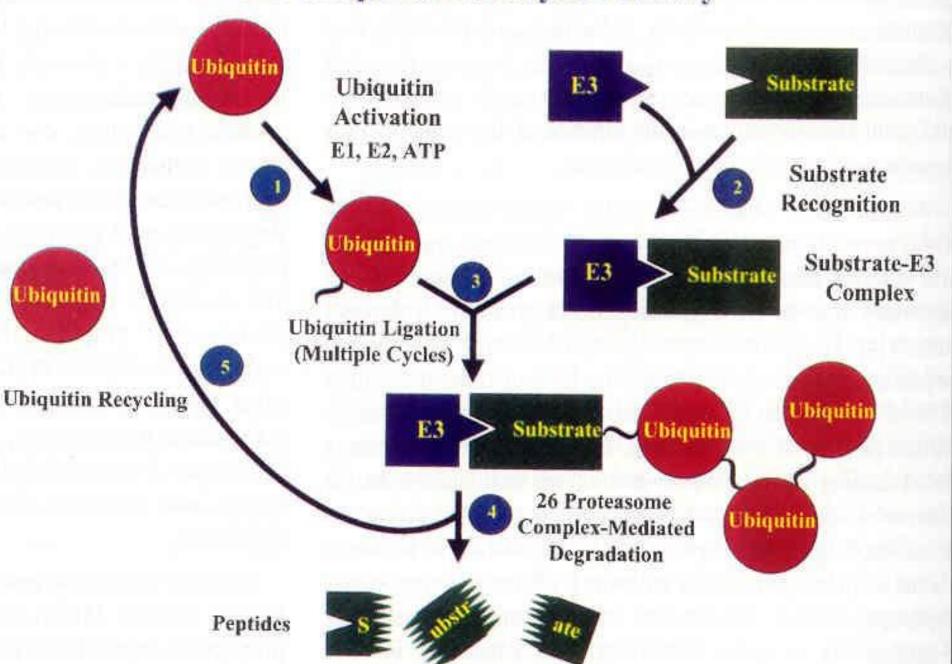
01.09.2019 ESPEN LLL Programme

Learning objectives:

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM


- Protein metabolism in the critically ill
- Higher protein intake increases whole protein content in the body
- What is the best protein intake during the early or late period of the acute phase and in the post acute phase for PICS or rehabilitation
- No strong evidence for high protein administration (more than 1.3 g/kg/d) in ICU patients
- Disease specific protein therapy for trauma, renal or frail and elderly patients

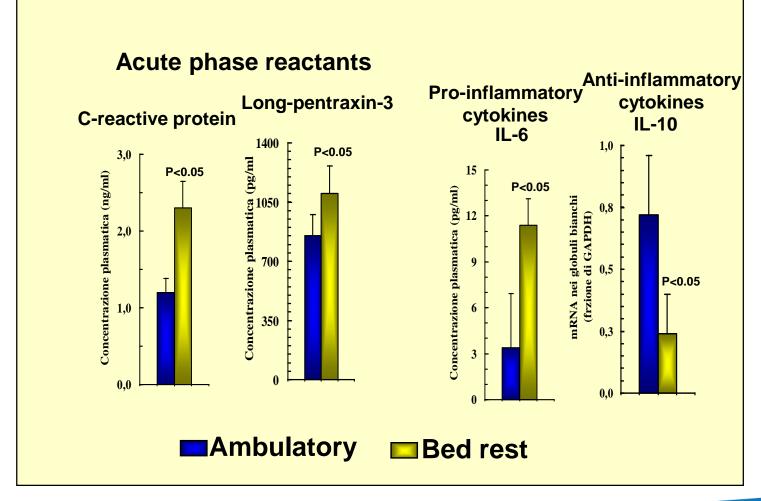

Daily protein turnover in individual organs



Organs with a large turnover may be susceptible to decreased free aminoacids. Some organs are prioritized in acute illness.

Singer et al: ESPEN Guidelines: Nutrition in ICU. Clin Nutr 2019

The Ubiquitin Proteolytic Pathway


THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND

METABOLISM

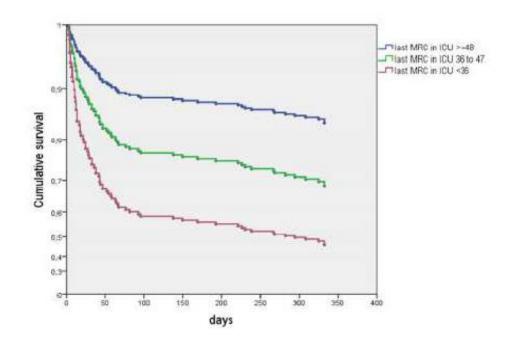
EFFECTS OF 2-WEEK BED REST ON

INFLAMMATORY MEDIATORS IN HEALTHY YOUNG VOLUNTEERS

THE EUROPEAN SOCIETY FOR CLINICAL

NUTRITION AND METABOLISM

Clinical consequences of protein and muscle loss


ENTRIP LIPE

Acute Outcomes and 1-Year Mortality of Intensive Care Unit-acquired Weakness

A Cohort Study and Propensity-matched Analysis

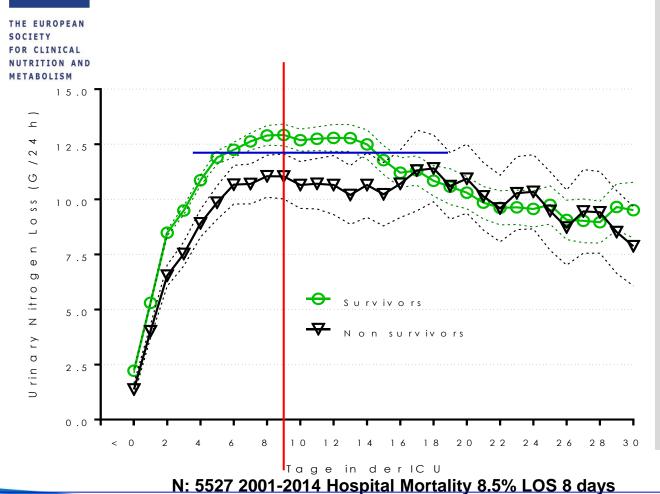
Greet Hermans^{1,2}, Helena Van Mechelen², Beatrix Clerckx^{2,3}, Tine Vanhullebusch², Dieter Mesotten^{2,3}, Alexander Wilmer¹, Michael P. Casaer^{2,3}, Philippe Meersseman¹, Yves Debaveye^{2,3}, Sophie Van Cromphaut^{2,3}, Pieter J. Wouters^{2,3}, Rik Gosselink⁴, and Greet Van den Berghe^{2,3}

AJRCCM 2014

1-year mortality: 31% vs. 17 %; (P = 0.015)

Assessment

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM


- Nitrogen output
- FFM through bioeletrical impedance
- Ultra sound
- CT
- MRI
- Stable isotopes
- Biopsy

Nitrogen Loss

From M Hiesmayr

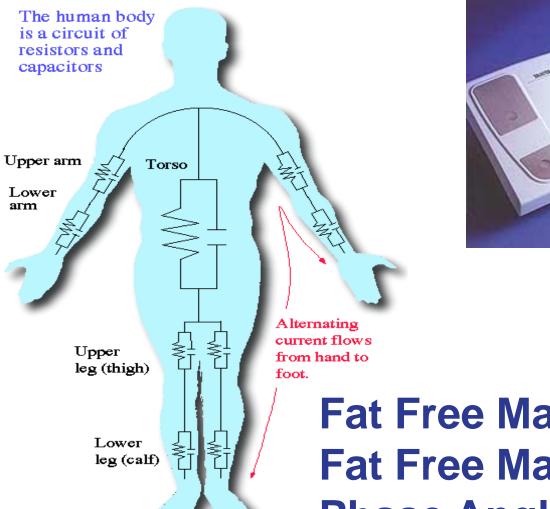
Factors:

- Weight +0.5g/10kg
- Height +0.4g/10cm
- Age- 1.4g 60a

- 1.8g

80a

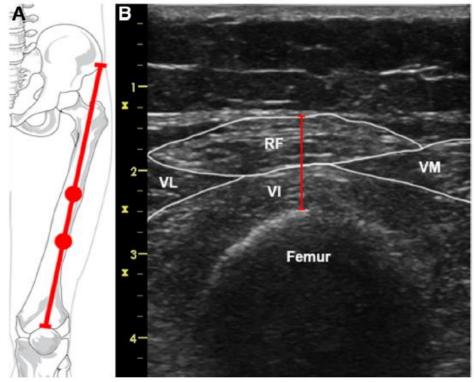
- Gender (f) - 1.2g
- 1.0g Death
- BMI no effect
- Time in ICU !!!
- **Baseline** 12g/day



THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

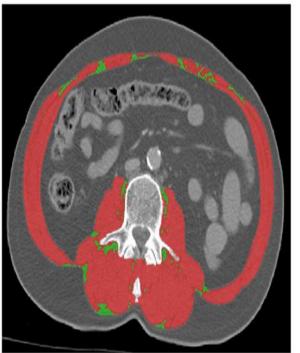
RJL

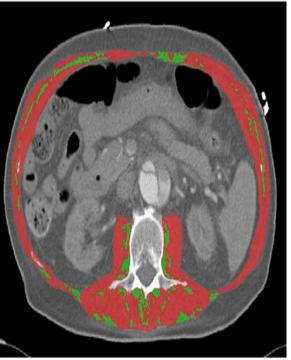
Bioelectrical Analysis

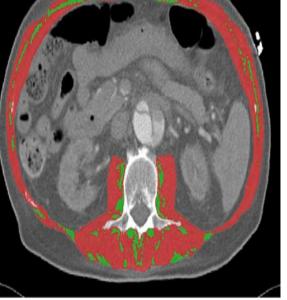


Fat Free Mass Fat Free Mass Index FFMI Phase Angle

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

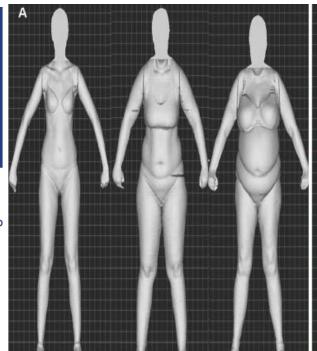

Fig. 1 Ultrasound assessment of the *quadriceps femoris* muscle thickness. **a** Anatomical diagram locating the "midpoint" and the "two-thirds" measurement sites. From *Wikimedia Commons*. **b** Transverse ultrasound section made by linear probe at the midpoint site. RF: *rectus femoris*; VL: *vastus lateralis*; VM: *vastus medialis*; VI: *vastus intermedius*

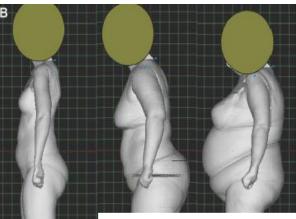

Pardo et al. BMC Anesthesiology (2018) 18:205


Wischmeyer P, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care 2015; 19: S6

NUTRITION AND METABOLISM

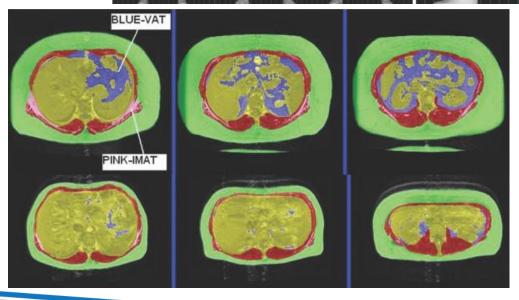
Muscle

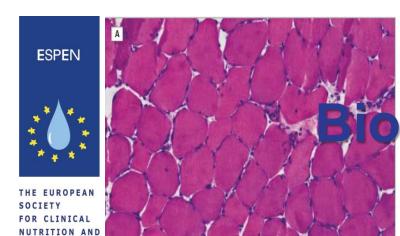

Skeletal muscle quality as assessed by CT-derived skeletal muscle density is Looijaard et al. Critical Care (2016) 20:386 associated with 6-month mortality in mechanically ventilated critically ill patients


Education and Culture DG

Lifelong Learning Programme

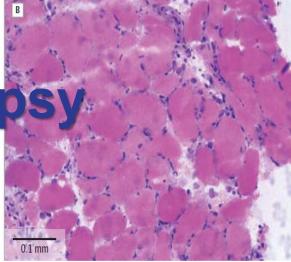
THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND
METABOLISM

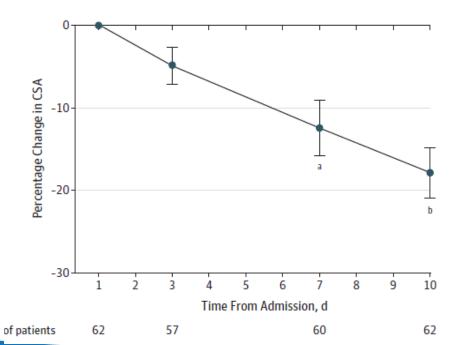




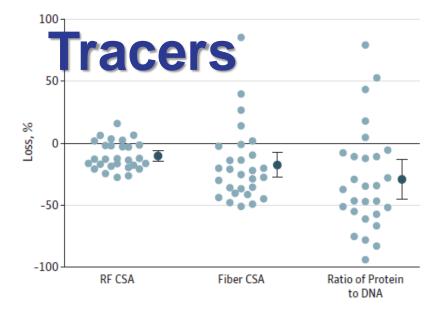
MRI

Gallagher DeLegge,, JPEN 2011; 35: 21S


	Lean Man	Obese Man
Initial		
Body weight, kg	70	140
Fat, kg	9.0	61.5
Protein, kg	12.2	15.7
Glycogen, kg	0.3	0.4
Loss during starvation		
Weight (% of initial)	38.0	69.0
Weight, kg	26.6	96.6
Fat, kg ^a	8.0	61.5
Protein, kg^b	4.6	8.1
Glycogen, kg	0.3	0.4
Available energy during starvation, kcal (%)		
Fat	75,200 (77.6)	568,700 (93.8)
Protein	20,400 (21.1)	36,000 (5.9)
Glycogen	1260 (1.3)	1680 (0.3)
Total	98,860 (100.0)	606,380 (100.0)
Mean daily total energy expenditure, kcal/d c	1500	2260
Survival time, d	65	270



METABOLISM

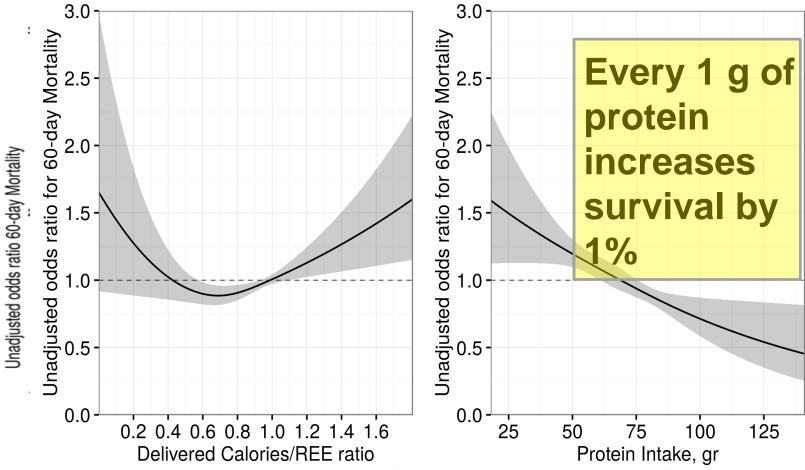


A Change in rectus femoris (RF) cross-sectional area (CSA) over 10 d

B Measures of muscle wasting in patients assessed by all 3 measures on both day 1 and day 7 (n = 28)

JAMA. 2013;310(15):1591-1600...

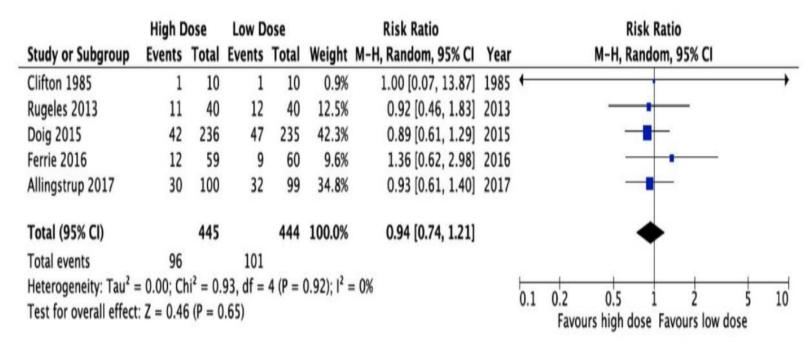
Evidence for protein administration


THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

- Observational studies
- PRCT and meta analysis
- Guidelines

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study


Oren Zusman^{1*}, Miriam Theilla^{2,3}, Jonathan Cohen^{2,4}, Ilya Kagan², Itai Bendavid² and Pierre Singer^{2,4}

FOR CLINICAL NUTRITION AND

METABOLISM

Figure 1. Meta-analysis of five randomized trials of high vs. low dose protein administration in the critically ill: effect on overall mortality.

Should We Prescribe More Protein to Critically Ill Patients?

Nutrients 2018, 10, 462;

Daren K. Heyland 1,2,3,*, Renee Stapleton 4 and Charlene Compher 5

What to do to improve outcome and preserve muscles?

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Give more?

Give early?

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

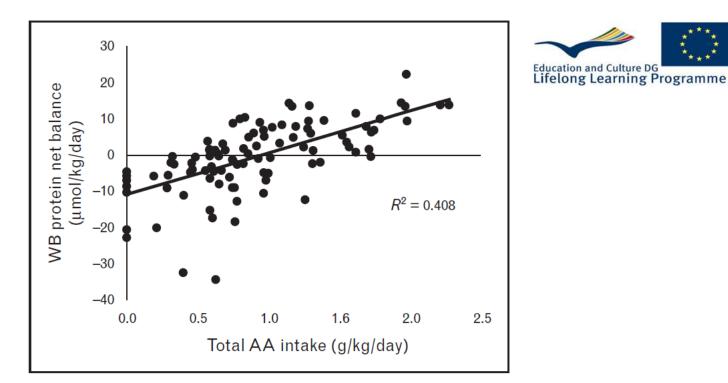
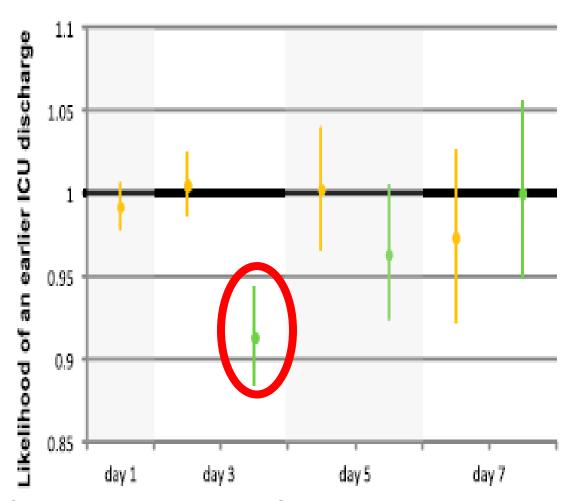


FIGURE 1. Protein balance in relation to amino acid intake in critically ill patients treated in the ICU from four different studies. Whole-body protein balance was measured using isotopically labeled phenylalanine. (Reproduced with

Does feeding induce maximal stimulation of protein balance?


Felix Liebau, Åke Norberg, and Olav Rooyackers

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Education and Culture DG

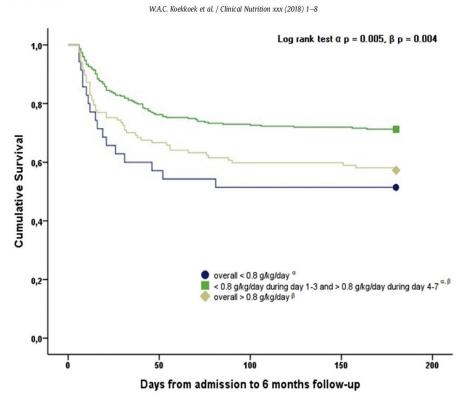
Casaer, Wilmer, Hermans, et al.: Early Nutrition in the ICU: Less Is More Education and Culture DG Lifelong Learning Programme

Increase in mortality?

Casaer MP, Wilmer A, Hermans G, Wouters PJ, Mesotten D, Van den Berghe G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial. A post hoc analysis. Am J Respir Crit Care Med 2013; 187: 247–255.

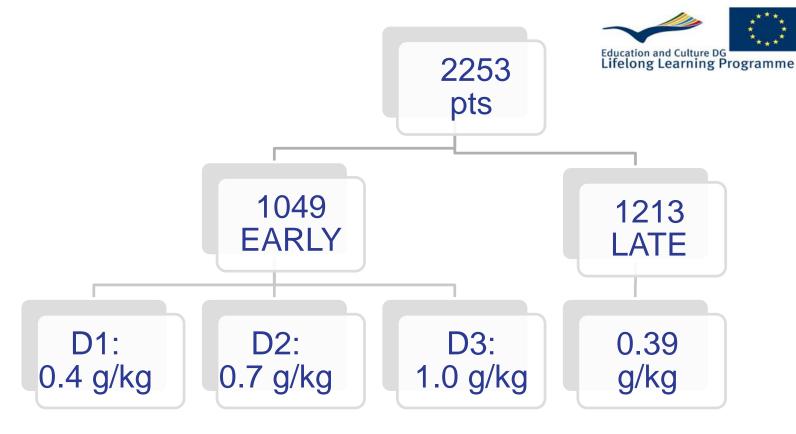
What is early?

- THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM
- The timing: starting during the first 72 hours, regardless of the dose?
- The amount: Early and plenty: up to 1 g/kg/d within 72 hours


THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study

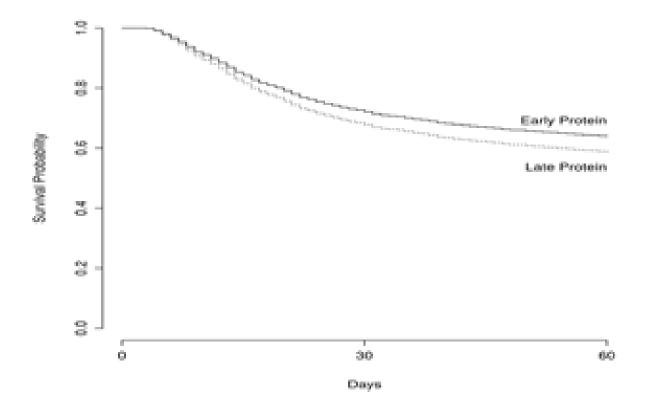
Clinical Nutrition


W.A.C. (Kristine) Koekkoek ^{a, 1}, C.H. (Coralien) van Setten ^{a, 1}, Laura E. Olthof ^a, J.C.N. (Hans) Kars ^b, Arthur R.H. van Zanten ^{a, *}

Cox Proportional Hazard Model Analysis: Average protein intake during day 1–3 and day 4–7 and 6-month mortality comparing protein intake categories.

Average protein intake	N	В	Hazard Ratio	95% CI	p-value
Days 1–3					0.019
$< 0.8 \mathrm{g^* kg^{-1}^* day^{-1}}$	338	Referenc	e		
$> 0.8 \mathrm{g^* kg^{-1}^* day^{-1}}$	117	0.208	1,231	1.040-1.457	0.016
Days 4–7					0.008
$< 0.8 \text{ g}^{*}\text{kg}^{-1*}\text{day}^{-1}$	40	0.473	1.605	1.178-2.186	0.003
0.8-1.2 g*kg ⁻¹ *day ⁻¹	164	-0.335	0.716	0.558-0.917	0.008
$>1.2 \text{ g*kg}^{-1*} \text{day}^{-1}$	251	Referenc	ce		

Article


Early Administration of Protein in Critically Ill Patients: A Retrospective Cohort Study

Itai Bendavid ^{1,2,*,†}, Oren Zusman ^{2,3,†}, Ilya Kagan ^{1,2}, Miriam Theilla ^{1,4}, Jonathan Cohen ^{1,2} and Pierre Singer ^{1,2}

60 days mortality: **36% in early** and **43% in late** protein administration (p<0.001 for difference) Cox analysis: HR 0.84, 95% CI 0.72- 0.98, p=0.01

FOR CLINICAL NUTRITION AND

METABOLISM

High protein intake > 2 g/kg/day Recommended like in cancer, burns, ...

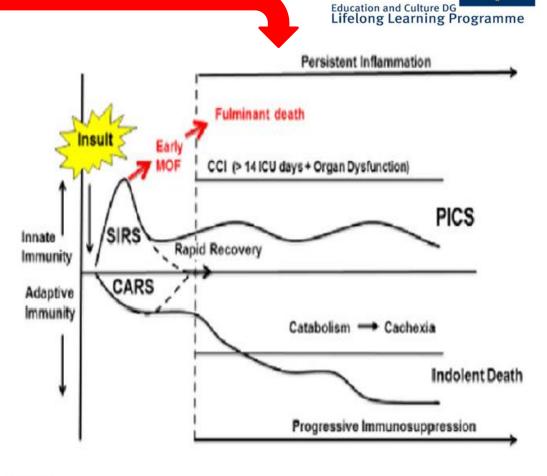
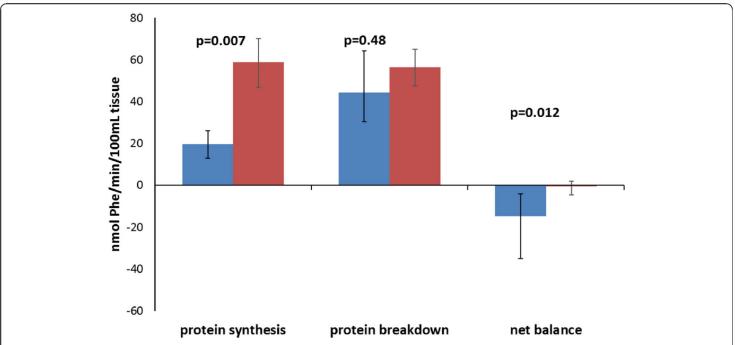


Figure 1

Nutrition Support for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome


Nutr Clin Pract. 2017; 32: 121S-127S

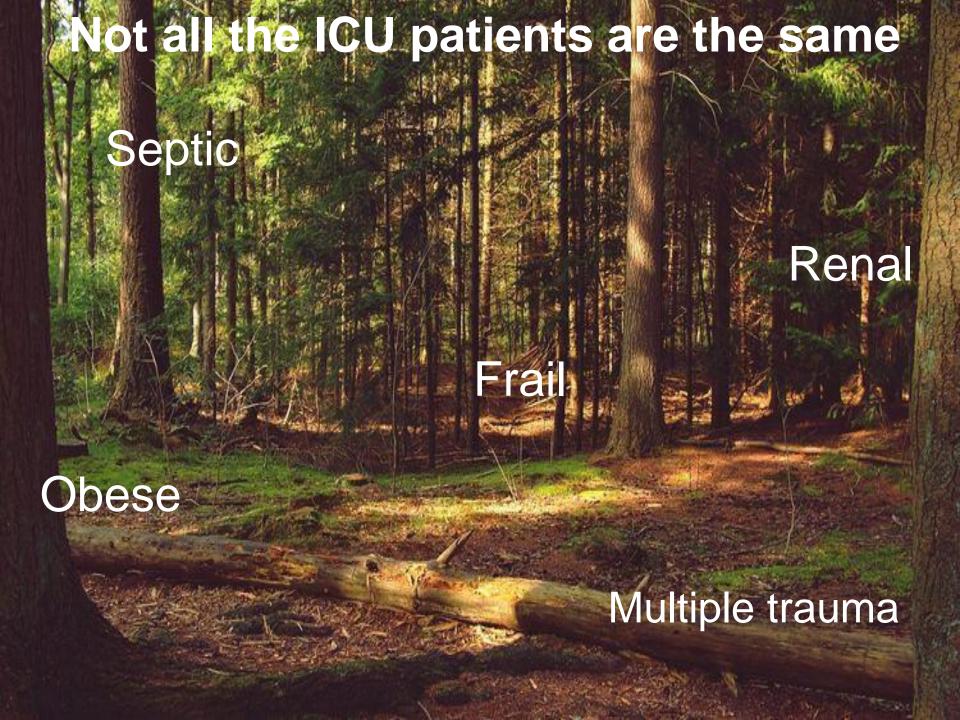
Frederick A. Moore, MD¹, Stuart Phillips, PhD², Craig McClain, MD³, Jayshil J. Patel, MD⁴, and Robert Martindale, MD, PhD⁵

THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND
METABOLISM

Fig. 2 Skeletal muscle mixed protein turnover in long-staying intensive care unit patients (n = 20). Measurements in the period days 10–20 (blue bars; n = 10) are compared with those in the period days 30–40 (red bars; n = 9). Data are given as medians (quartiles). The p values are given for nonparametric comparisons between the two time periods

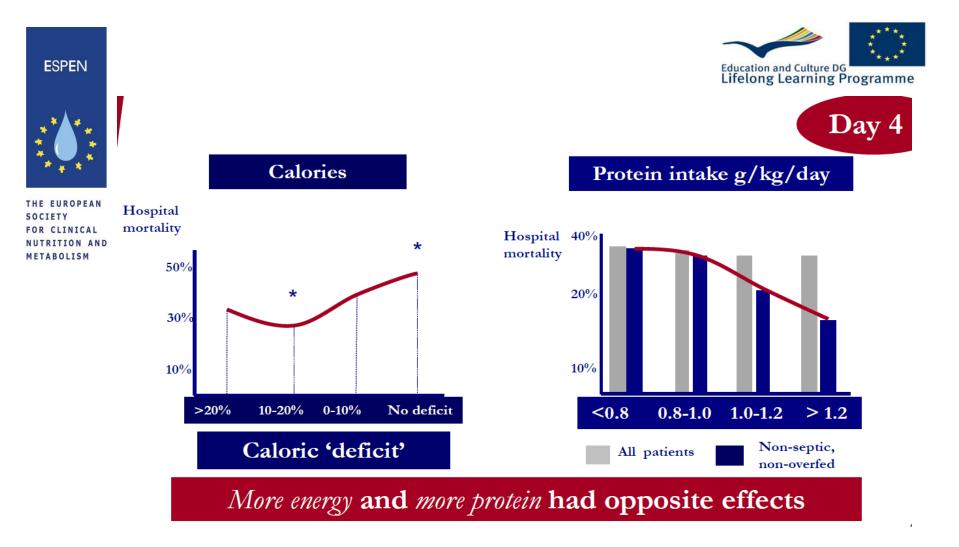
An attenuated rate of leg muscle protein depletion and leg free amino acid efflux over time is seen in ICU long-stayers

Critical Care (2018) 22:13


Lena Gamrin-Gripenberg^{1,2}, Martin Sundström-Rehal^{1,2}, Daniel Olsson³, Jonathan Grip^{1,2}, Jan Wernerman^{1,2} and Olav Rooyackers^{1,2*}

Intermediate conclusions

- THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM
- Most of the patients do not receive enough protein intake
- Early progressive administration of energy AND protein may be beneficial, but remain to be demonstrated
- Late protein administration seems beneficial



Obese patients

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

- Provide 60 70% of target energy needs
- At least 2gm/kg ideal body weight of protein
- Pro improves insulin sensitivity
 - prevents hypercapnea, fluid retention
 - weight loss BUT NOT PRIMARY OBJECTIVE
- Con higher rates of infection
 - poorer outcomes with negative energy balance
- ASPEN/SCCM endorses hypocaloric feeding in obese patients
- ESPEN propose to measure IC and N2 excretion to guide medical nutritional therapy

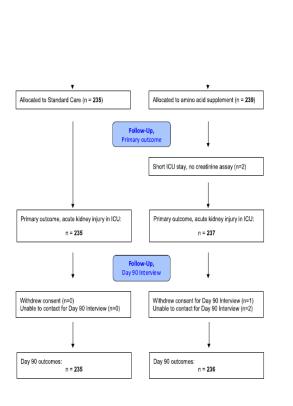
Weijs P, Looijaard, W, Beishuizen A, Girbes AR, Oudemans-van Staaten HM. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care 2014; 18:701

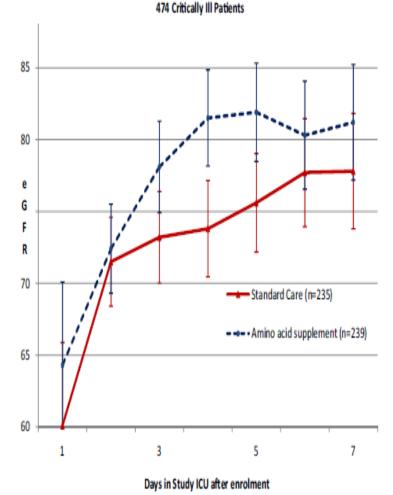
THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Education and Culture DG Lifelong Learning Programme

The Acute Kidney Injury patients

Protein losses during CRRT


- Molecular weight of AA; 140 Da and lost during CRRT
- AA lost: 7.9 g/24h with flow 1000 mL/h and 2.4 g/24 with flow 500 mL/h
- Lost more during ultrafiltration
- Convection increases loss by 1.2 to 7.6 g/d
- Diffusion inducing catabolism
- All together loss of amino acids: 10-15 g/day


Chua HR, Baldwin I, Fealy N, Naka T, Bellomo R. Amino acid balance with extended daily diafiltration in acute kidney injury. Blood Purif 2012; 33:292-99.

Gordon S. Doig
Fiona Simpson
Rinaldo Bellomo
Philippa T. Heighes
Elizabeth A. Sweetman
Douglas Chesher
Carol Pollock
Andrew Davies
John Botha
Peter Harrigan
Michael C. Reade

Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled tria

Estimated Glomerular Filtration Rate (CKD-EPI), post-randomization

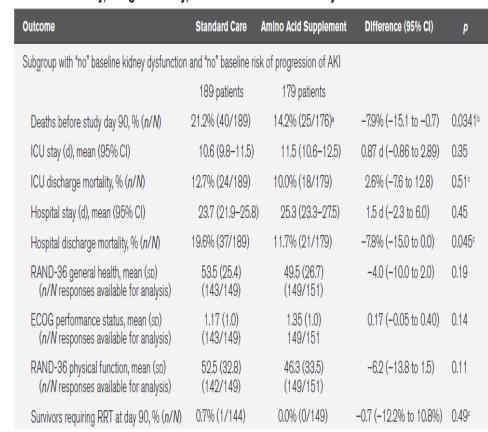
Intensive Care Med 2015; 41: 1197-1208

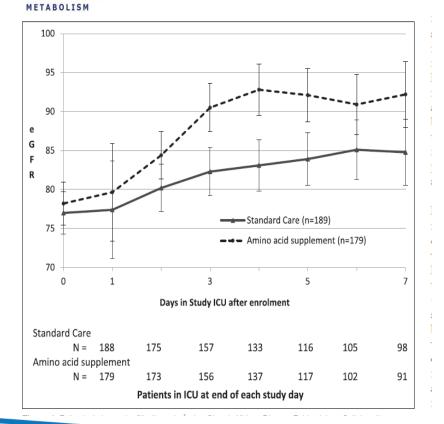
Table 3 Tertiary outcomes: mortality, length of stay, and quality of life

Mortality	Standard care (235 patients)	Amino acid supplement (239 p	patients) Risk diffe	rence (exact 95 % CI)	Exact P value
ICU discharge mortality, % (n/N) Hospital discharge mortality, % (n/N) Day 90 mortality, % (n/N)	12.8 % (30/235) 18.3 % (43/235) 20.0 % (47/235)	11.7 % (28/239) 15.5 % (37/239) 17.8 % (42/236) ^a	-2.28 %	(-10.1 to 7.8) (-11.7 to 6.3) (-11.1 to 6.9)	0.78 0.46 0.56
Length of stay	Standard care (235 patients)	Amino acid supplement	(239 patients)	Difference (95 % CI)	P value
ICU stay (days), mean (95 % CI) Hospital stay (days), mean (95 % CI)	10.7 (10.0 to 11.5) 24.8 (23.0 to 26.6)	11.6 (10.8 to 12.5) 26.0 (24.2 to 28.0)	(0.91 days (-0.62 to 2.68) 1.3 days (-2.2 to 5.3)	0.26 0.49
Quality of life and physical function (reported by survivors at day 90 intervi-	ew)	Standard care (188 survivors)	Nephro-protect (194 survivors)	Difference (95 % CI)	P value
RAND-36 General Health, mean (SD) (ECOG Performance Status, mean (SD) RAND-36 Physical Function, mean (SD Requiring RRT at day 90, % (n/N resp	(n responses available for analysis)), (n responses available for analysi		50.5 (27.2) (n = 192) 1.31 (1.0) (n = 192) 47.7 (33.7) (n = 192) 0.0 % (0/191)	-0.13 (-0.34 to 0.07	0.11

Table 2 Secondary renal outcomes

Secondary renal outcomes	Standard care (235 patients)	Amino acid supplement (239 patients)	Difference (95 % CI)	P value
Volume received, mean (SD)	2232 (905)	2612 (857)	380 mL (221 to 539)	< 0.0001
mL per ICU day Urine output, mean (SD)	2009 (845)	2309 (872)	300 mL (145 to 455)	0.0002


The Effect of IV Amino Acid Supplementation on Mortality in ICU Patients May Be Dependent on Kidney Function: Post Hoc Subgroup Analyses of a Multicenter Randomized Trial Critical Care Medicine: 2018; 46:1293-1301



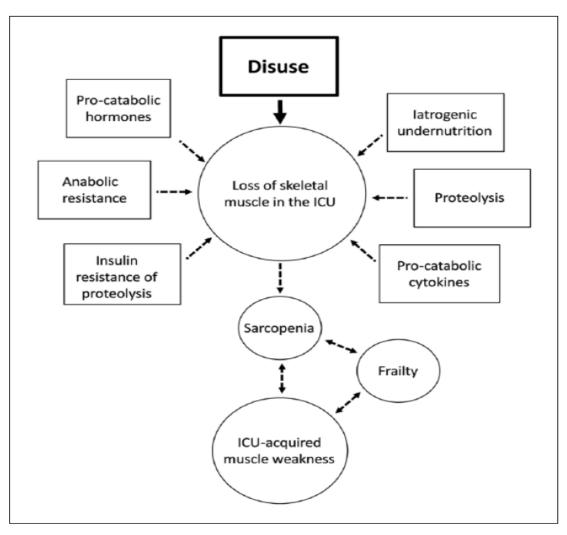
THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND Ran Zhu, MD¹; Matilde J. Allingstrup, PhD¹,²; Anders Perner, PhD²; Gordon S. Doig, PhD¹;

for the Nephro-Protective Trial Investigators Group

TABLE 3. Mortality, Length of Stay, and Health-Related Quality of Life

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

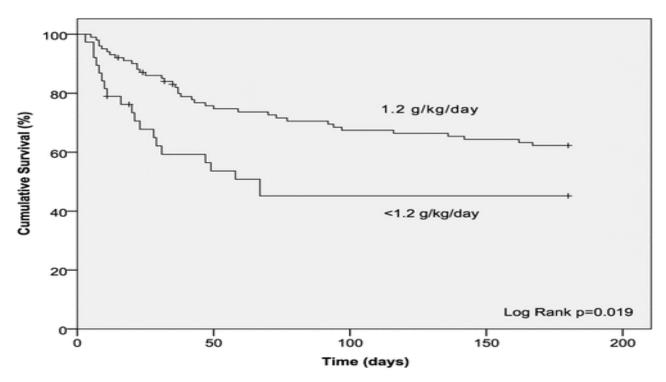
The frail and the older



Protein Turnover and Metabolism in the Elderly Intensive Care Unit Patient

Stuart M. Phillips, PhD¹; Roland N. Dickerson, PharmD²; Frederick A. Moore, MD³; Douglas Paddon-Jones, PhD⁴; and Peter J. M. Weijs, PhD^{5,6}

Nutrition in Clinical Practice Volume 32 Supplement 1 April 2017 112S–120S



THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND

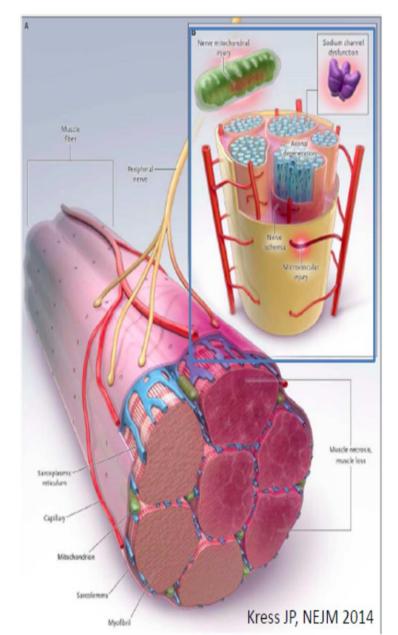
METABOLISM

Education and Culture DG Lifelong Learning Programme

Adequate Protein Nutrition Support Modifies 6-Month Mortality Risk of Low Muscle Mass in Critically III Patients

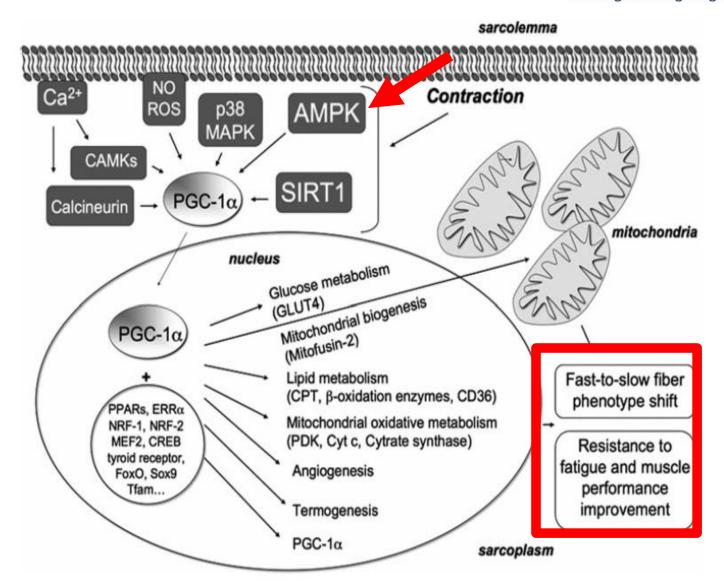
Wilhelmus G. P. M. Looijaard; Ingeborg M. Dekker; Heleen M. Oudemans-van Straaten; Peter J. M. Weijs

Addition of exercise to nutrition in the ICU


THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

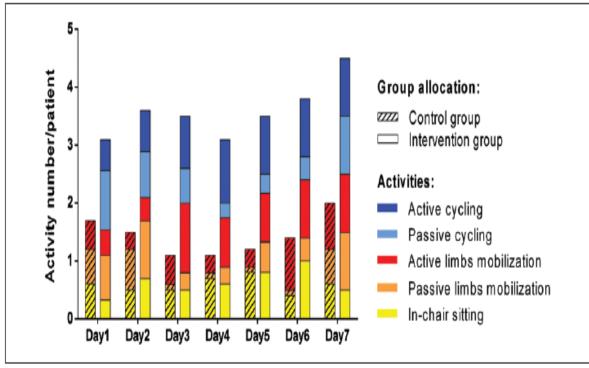
THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

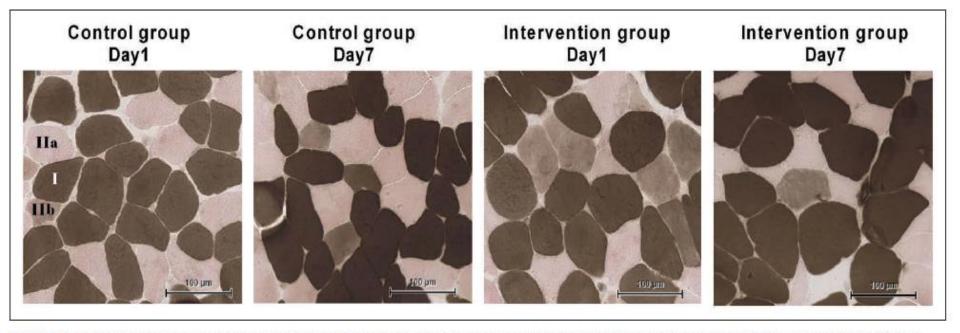
Exercise-Induced Skeletal Muscle Remodeling and Metabolic Adaptation: Redox Signaling and Role of Autophagy


Elisabetta Ferraro, Anna Maria Giammarioli, Sergio Chiandotto, Ilaria Spoletini, and Giuseppe Rosano 1,4

type		Mitochondrial density Citrate synthase SDH			ANTIOXIDANTS & REDOX SIGNALING Volume 21, Number 1, 2014			
MyHC type	Metabolism	Time to peak tens Energy efficiency Endurance capac) 	Shortening velocity	Fatigue resistant	Color Myoglobin	CSA	Force production
Type I	Oxidative	High	Low	Slow twitch	Resistant	Red High	Small	Weak
Type IIa	Oxidative Glycolitic	Intermediate	Intermediat	Fast twitch	Resistant	Low red Intermediate	Large	Intermediate
Type IIx/d	Glycolitic	Low	High	Fast twitch	Fatigable	White Low	Large	Strong
Type IIb	Glycolitic	Low	High	Fast twitch	Fatigable	White Low	Large	Strong

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM




THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND
METABOLISM

Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial

Cheryl E. Hickmann, PT, PhD¹; Diego Castanares-Zapatero, MD, PhD¹; Louise Deldicque, PhD²; Peter Van den Bergh, MD, PhD³; Gilles Caty, MD, PhD⁴; Annie Robert, PhD⁵; Jean Roeseler, PT, PhD¹; Marc Francaux, PhD²; Pierre-François Laterre, MD¹

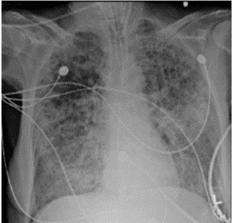
Figure 3. Muscle fiber cross-sectional area changes by group. Skeletal muscle sections stained with adenosine triphosphatase pH 4.50; *black* fibers correspond to type-I fibers; *gray* fibers are type-IIb fibers and; *pink* fibers correspond to type-IIa.

TABLE 2. Changes in Cross-Sectional Area by Groups

	Control Group (Control Group ($n = 9$), Mean $\pm sd$		Intervention Group $(n = 8)$, Mean \pm so		
Fiber Type	Day 1	Day 7	Day 1	Day 7	p ⁵	
All fibers types (μm²)	3,603±1,284	2,629±1,174ª	3,448±1,993	3,770 ± 1,473	0.01	
Type I fibers (µm²)	$4,236 \pm 1,379$	3,135±1,103ª	$4,250 \pm 1,977$	$4,678 \pm 1,189$	0.02	
Type-IIa fibers (μm²)	$3,949 \pm 1,447$	2,744±1,260ª	$2,574 \pm 856$	$2,920 \pm 745$	0.003	
Type-IIb fibers (µm²)	2,624±1,243	2,006±1,286ª	2,082±1,083	2,576±948	0.04	

In adult critically ill patients, does high protein intake compared to low protein intake improve outcome?

THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND


- 1.3 g protein /kg per day should be delivered progressively during critical illness.
- Grade of recommendation: O (91%) agreement
- Exercise can be suggested.

Singer et al: ESPEN Guidelines: Nutrition in ICU. Clin Nutr 2019

Conclusions

- Different diseases react differently to protein administration
- Requirements adapted to weight, age, metabolic status: not a unique recommendation!
- High amount of protein is needed (1.3 g/d) and some patients may need more and some less
- Exercise may decrease protein catabolism

