

ESPEN LLL Course Topic 8 - Approach to Oral and Enteral Nutrition in Adults

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Formulae for Enteral Nutrition

Module 8.4

Luzia Valentini, PhD, Matthias Pirlich MD

Charité – Universitätsmedizin Berlin, Germany

Alastair Forbes MD

Norwich Medical School, UK

General characteristics

European Commission
Directive 1999/21/EC on
dietary foods for special
medical purposes
regulates

Composition

- Standard or disease specific
- Nutritionally complete or nutritionally incomplete

Labelling requirements

- Nutrient content
- Origin & nature of protein
- Important notices

Micronutrient content

 1500 kcal of feed must include daily recommended intakes (RDA) of all listed micronutrients

ESPEN LLL Prox

General characteristics

THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND
METABOLISM

Enteral formulae (usually) do not contain:

- Lactose
- Gluten
- Cholesterol
- Purines

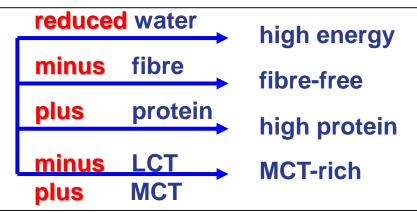
Typical Standard Formulae

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

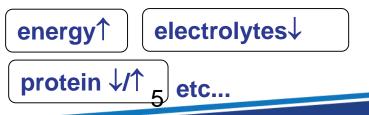
- 15-20% of energy from whole protein
- ~30% of energy from lipid mostly LCT
- 50-55% of energy from carbohydrate
- ~1kcal/ml (normal energy density)
- ~85% water
- Fibre (fibre-free options are available)



Overview of types of EN formulae



standard formulae


modified standard formulae

disease-specific formulae

for instance renal formulae

The very similar composition Education and Culture DG Lifelong Learning Programme of different standard formulae

THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND
METABOLISM

D	Jevity	Nutricomp Standard Fibre	Fresubin Original Fibre	Nutrison Complete Multifibre
Per 100 ml	Abbott	B.Braun	Fresenius	Nutricia
Protein g	4.0	3.8	3.8	5.5
Fat g	3.5	3.3	3.4	3.7
Carbohydrates g	14	13.8	13.8	11.3
Prot:Fat:CH ratio	16:30:54	15:30:55	15:30:55	16:35:49
Energy kcal/ml	1.0	1.0	1.0	1.0
Osmolality mosm/l	249	250	300	210
Fibre g	1.1	1.5	1.5-2	1.5

Peptide-based formulae

THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND
METABOLISM

Whole protein formulae

- polymeric
- nutrient defined
- high molecular weight

Peptide-based formulae

- oligomeric
- chemically defined
- low molecular weight

Proteins

Peptides

Peptide-based formulae

Whole protein formulae

- polymeric
- nutrient defined
- high molecular weight

Peptide-based formulae

- oligomeric
- chemically defined
- low molecular weight

Proteins

Peptides

Polysaccharides / maltodextrins

Maltodextrins

Long-chain triglycerides

MCT

Oligomeric formulae

Whole protein formulae

- polymeric
- nutrient defined
- high molecular weight

Peptide-based formulae

- oligomeric
- chemically defined
- low molecular weight

Proteins

Peptides

Polysaccharides / maltodextrins

Maltodextrins

Long-chain triglycerides

MCT

Oligomeric formulae should be considered

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

- When whole protein formulae are not tolerated
- When capacity for absorption is severely impaired
- Initially, after prolonged starvation
- In ICU patients and those with severe acute pancreatitis due to be fed via a jejunal tube
- In selected patients with short bowel syndrome
- In selected patients with fistulating Crohn's disease

Druml W, Roth E, Jadrna K. AKE, 2004, McClave SA, et al. AJG 2016.

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND

Oligomeric formulae should be considered

- When whole protein formulae are not tolerated
- When capacity for absorption is severely impaired
- Initially, after prolonged starvation
- In ICU patients and those with severe acute pancreatitis due to be fed via a jejunal tube
- In selected patients with short bowel syndrome
- In selected patients with fistulating Crohn's disease

None of these is an absolute requirement for an oligomeric feed

Free Amino Acid, Elemental or Monomeric Formula

ligopeptides are generally better absorbed than free society amino acids and have lower osmolarity

• Very limited indication:

ESPEN

- Some forms of congenital metabolic disease
- Particularly severe allergy to dietary protein

• Free amino acid formula must be avoided in SBS, even if other formula are not tolerated

Disease-specific Formulae

Macro- and Micronutrient composition adapted needs of specific disease, digestive or metabolic disorder

EN Formulae in Diabetes

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

EN Formulae in Diabetes

Copyright 2006 by Randy Glasbergen. www.glasbergen.com

"You can still have your favorite cereal, but I replaced the marshmallow bits with fish oil capsules."

The "classical" diabetes formula

THE EUROPEAN
SOCIETY
FOR CLINICAL
NUTRITION AND

- Part of the glucose is replaced by fructose
- Higher amounts of polysaccharides
- Higher proportion of lipid (?)

Can generally be recommended for uncomplicated well-controlled DM

High MUFA diabetes formulae

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND

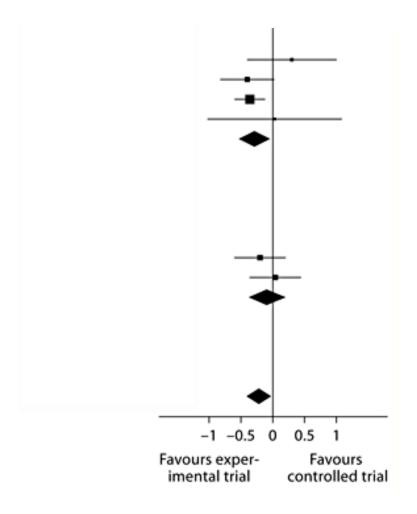
- Up to 35% energy as mono-unsaturated fatty acids
- Higher total fat
- Decreased carbohydrate

Beneficial in complicated,
poorly controlled DM
Increasingly advocated more generally

High MUFA vs

ESPEN

standard formulae – complex slide


* *	Study or sub-group	High N	MUFA Low MUFA Wei	Weight	_	Mean difference IV, random, 95% CI				
EUROP	l	mean	SD	total	mean	SD	total	70	iv, random (95% Ci)	IV, random, 95% Ci
Υ	1.7.1 High MUFA vs. LF									
INI ION	Brehm et al., 2009	7.5	1.95	43	7.2	1.44	52	6.6	0.30 (-0.40 to 1.00)	
LIS	Elhayany et al., 2010	6.3	1.4	61	6.7	0.9	55	16.4	-0.40 (-0.82 to 0.02)	
	Esposito et al., 2009	6.85	0.9	108	7.21	0.9	107	38.4	-0.36 (-0.60 to -0.12)	-■-
	Shai et al., 2008	7.31	1.03	8	7.28	1.19	9	3.0	0.03 (-1.03 to 1.09)	
	Subtotal			220			223	64.4	-0.28 (-0.52 to -0.03)	◆
	1.7.2 High MUFA vs. LGI									l l
	Elhayany et al., 2010 Wolever et al., 2008	6.3 6.62	1.4 0.938	61 50	6.5 6.58	0.8 1.117	63 50	17.8 17.7	-0.20 (-0.60 to 0.20) 0.04 (-0.36 to 0.44) -0.08 (-0.37 to 0.21)	
	Elhayany et al., 2010	6.3								•
	Elhayany et al., 2010 Wolever et al., 2008	6.3 6.62 00, $\chi^2 = 0$	0.938 0.68, d.f	50 111 . = 1 (p =	6.58	1.117	50	17.7	0.04 (-0.36 to 0.44)	•
	Elhayany et al., 2010 Wolever et al., 2008 Subtotal Heterogeneity: $\tau^2 = 0.0$	6.3 6.62 00, $\chi^2 = 0$	0.938 0.68, d.f	50 111 . = 1 (p =	6.58	1.117	50	17.7	0.04 (-0.36 to 0.44)	•
	Elhayany et al., 2010 Wolever et al., 2008 Subtotal Heterogeneity: $\tau^2 = 0.0$ Test for overall effect: 2	6.3 6.62 00, $\chi^2 = 0$ Z = 0.55	0.938 0.68, d.f (p = 0.5	50 111 5. = 1 (p = 68)	6.58 0.41), I ² =	1.117	50 113	17.7 35.6	0.04 (-0.36 to 0.44) -0.08 (-0.37 to 0.21)	•
	Elhayany et al., 2010 Wolever et al., 2008 Subtotal Heterogeneity: $\tau^2 = 0.0$ Test for overall effect: 2	6.3 6.62 00, $\chi^2 = 0$ Z = 0.55	0.938 0.68, d.f (p = 0.5	50 111 5 = 1 (p = 6 58) 331 6 = 5 (p =	6.58 0.41), I ² =	1.117	50 113	17.7 35.6	0.04 (-0.36 to 0.44) -0.08 (-0.37 to 0.21)	-1 -0.5 0 0.5 1

Schwingshackl L, Strasser B, Hoffmann G. 2011

ESPEN

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

High MUFA vs standard formulae - the important bit

Schwingshackl L, Strasser B, Hoffmann G. 2011

NUTRITION AND METABOLISM

Blood glucose control in ICU

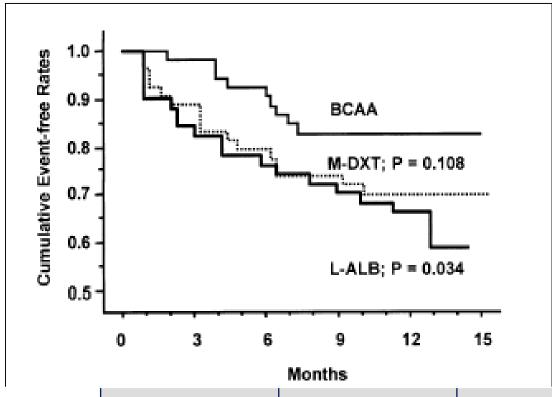
- Standard or ICU-specific formulae ?
- Tight glycaemic control
- How tight ?
- Exogenous insulin is most important

EN formulae in liver disease

Liver vs Standard Formulae

HE EUROPEAN	LIVER	High-Energy
OCIETY		

SOCIETY FOR CLINICAL NUTRITION AND METABOLISM	Per 100 ml	Nutricomp Hepa B.Braun	Fresubin Hepa Fresenius - Kabi	Fresubin Energy Fibre Fresenius - Kabi
	Energy density / ml (Kcal)	1.3	1.3	1.5
	Protein g	4	4	5.6
	BCAA (% N)	46%	35%	18%
	Fat g	5.8	4.9	5.8
	MCT (% Fat)	50%	35%	14%
	Carbohydrates (CH) (g)	15.5	17,9	18.8
	Prot:Fat:CH ratio	12:40:48	12:38:50	15:35:50
	Fibre (g)	0,6	1	2.0


Druml W, Jadrna K. AKE 2005/2006

Oral BCAA in cirrhosis

	BCAA	L-Alb	MDXT
Admissions	15/58	27/56	28/59
Mortality	5	11	9

Chronic liver disease Education and Culture DG Lifelong Learning Programme Alcoholic steatohepatitis/cirrhosis

THE	EUROP	EAN
SOC	IETY	
FOR	CLINIC	AL
NUT	RITION	AND
	ABOLIS	

Recommendation	Grade
Standard formulae are generally recommended	C
Consider high energy formulae in patients with ascites	С
Use BCAA-enriched formulae in patients with hepatic encephalopathy arising during enteral nutrition	A
Oral BCAA supplementation can improve clinical outcome in advanced cirrhosis, after transplantation and after variceal haemorrhage	В

ESPEN

Immune-modulating formulae Education and Culture DG Lifelong Learning Programme

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

NUTRITION AND METABOLISM

Immune-modulating formulae Education and Culture DG Lifelong Learning Programme

Contain supranormal / pharmacological amounts of nutrients with potentially immune-modulating effects

- ω-3 fatty acids
 - Arginine
 - Glutamine
 - Nucleotides
 - Antioxidant vitamins & minerals

Glutamine

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Natural glutamine content in conventional formulae (2000 ml)

Whole protein formulae, normal protein 4-6 g

Whole protein formulae, high protein 6-8 g

Peptide-based formulae 2-3 g

Amino-acid based formula 0 g

Impact © 6.3 g

Immune-modulating formulae enriched with glutamine (2000 ml)

Impact Glutamine © 20 g

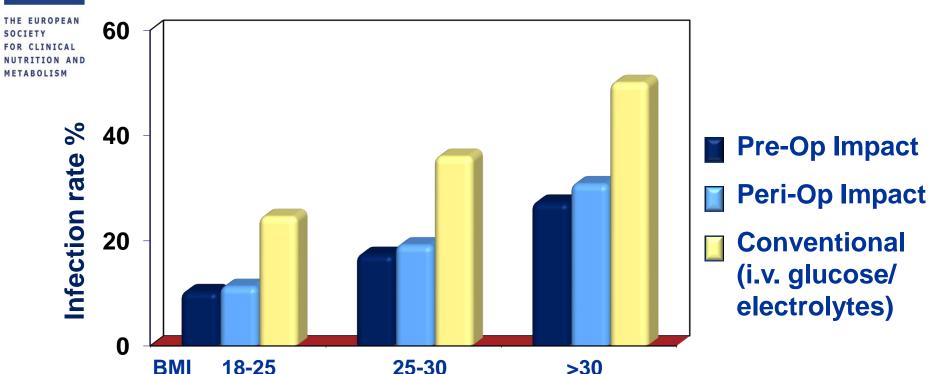
Nutricomp Immun © 21 g

Reconvan © 20 g

Immune-modulating formulae Education and Culture DG Lifelong Learning Programme

THE EUROPEAN FOR CLINICAL NUTRITION AND METABOLISM

R	ecommendation	Grade
P	erioperatively in:	A
•	Major head & neck surgery for cancer	
•	Major upper abdominal cancer surgery	
A	fter severe trauma	Α
In	intensive care patients with:	
•	Mild sepsis (APACHE II < 15)	В
•	ARDS (formulae containing ω-3 fatty acids)	В


CAVE! Severe sepsis → increased mortality

CAVE!

Pre/peri-operative immunonutrition

- 305 patients with GI tumours
- 45% with gastro-oesophageal resection

Indications for Renal Formulae

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Predialytic formulae:

- low protein (0.55-0.6 g/kg/d),
- high energy,
- low phosphate,
- low potassium
- In conservatively treated chronic renal failure on EN > 5 days (C)
- Essential amino acids and ketoanalogues, in association with very low protein formulae, may help to preserve renal function (B)

Indications for Renal Formulae

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Predialytic formulae: low protein (0.55-0.6 g/kg/d), high energy, low phosphate, low potassium

- In conservatively treated chronic renal failure on EN > 5 days
- Essential amino acids and ketoanalogues, in association with very low protein formulae, may help to preserve renal function (B)

Dialytic formulae: high protein (1.4-2.0 g/kg/d), high energy, low phosphate, low potassium, water soluble vitamins

- For tube feeding in patients on maintenance haemodialysis therapy (C)
- In acute renal failure in the event of electrolyte derangements
 (B)

EN formulae for lung disease

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Characteristics

Higher percentage of total energy from

fat – theoretical advantages from reduced

RQ and CO₂ retention

EN formulae for lung disease

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Characteristics

 Higher percentage of total energy from fat – theoretical advantages from reduced RQ and CO₂ retention

Indications

Stable COPD

 No additional advantage of pulmonary ONS compared to standard high protein or high energy ONS

(B)

EN formulae for lung disease

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Characteristics

 Higher percentage of total energy from fat – theoretical advantages from reduced RQ and less CO₂ retention

Indications

Stable COPD

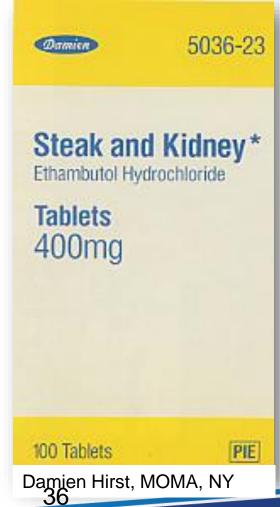
 No additional advantage of pulmonary ONS compared to standard high protein or high energy ONS
 (B)

Acute respiratory distress syndrome (ARDS)

Survival advantage from pulmonary formulae enriched with ω-3 fatty acids and antioxidants

Conclusions

- Enteral formulae are available for a wide array of indications.
- Standard formulae (including high energy & high protein formulae) are appropriate for the great majority of patients.
- Enteral formulae are designer foods, but their energy components are "natural" as they are based on high quality staples.
- Although some formulae may contain nutrients in pharmacological amounts, enteral formulae are to be considered primarily as food, not as drugs.



Conclusions

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

For discussion