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Learning Objectives    
 

 To know the causes of protein-energy wasting in ESRD-HD patients; 

 To learn how to evaluate nutritional status in ESRD-HD patients; 

 To learn the nutritional requirements in ESRD-HD patients; 

 To know the different ways of nutritional support;  

 To learn the best approach to nutritional support in malnourished ESRD-HD 

patients.  
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Key Messages   

  

 Adequate nutritional monitoring is crucial in ESRD-HD patients;    

 Protein-energy wasting (PEW) jeopardizing survival is found in approximately 25% of 

ESRD-HD patients; 

 Insufficient food intake and abnormal nutrient metabolism, mainly due to acidosis, 

inflammation, hormonal derangements and dialysis procedures, are considered the main 

causes of protein-energy wasting;  

 Protein-energy wasting relevant to the patient’s prognosis can be detected by a 

decrease in body mass index to <23, a body weight loss > 10% within 6 months, muscle 

loss > 10% over 6 months, serum albumin < 38 g/l and transthyretin (prealbumin) < 

300 mg/l; 

 Nutritional support, preferably in the form of oral nutritional supplements, is able to 

improve nutritional status; 

 Morbidity and mortality can be reduced when an improvement of nutritional status, as 

assessed by a serum transthyretin increase by 30 mg/l, is obtained by nutritional 

support;  

 In patients presenting with mild protein-energy wasting, as defined by insufficient 

spontaneous intake, dietary counselling, and, if necessary, oral nutritional supplements 

are worthwhile; 

 In patients exhibiting severe protein-energy wasting, with spontaneous intakes more 

than 20 kcal/kg/day, dietary counselling and oral nutritional supplements should be 

prescribed. Intradialytic parenteral nutrition is indicated in patients non-compliant with 

oral supplementation. Enteral nutrition can be necessary when oral nutritional 

supplements or intradialytic parenteral nutrition are unable to improve nutritional status; 

 In patients exhibiting severe protein-energy wasting, with spontaneous intakes less 

than 20 kcal/kg/day, or in stress conditions, daily nutritional support is necessary and EN 

should be preferred to PN. 
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1. Introduction 
 

In End-Stage Renal Disease patients on haemodialysis (ESRD-HD), a progressive 

depletion of energy stores and protein is frequently observed (1). An expert panel has 

suggested the term ‘protein–energy wasting’ (PEW) to describe this clinical condition, 

also defining the criteria for the diagnosis of PEW (Table 1) (2). In ESRD-HD patients, 

the prevalence of PEW varies, according to the nutritional parameters considered, from 

roughly 20% to 70% of adult ESRD-HD patients. The prevalence and severity of protein-

energy wasting increase with the number of years on dialysis and are more pronounced 

in older patients. In a European series of more than 7000 ESRD-HD patients, albumin, 

transthyretin and normalized equivalent of total nitrogen appearance (nPNA) were below 

the high-risk threshold of 35 g/L, 300 mg/L and 1 g/kg/day in 20%, 36% and 35% 

respectively (3). Similarly, in the DOPPS II Study, 20.5% of US patients had a serum 

albumin level less than 35 g/l (4). Given the prognostic value of serum albumin and 

transthyretin, it can be inferred that about 25% of patients described in these studies 

were severely malnourished. 

  
Table 1 

Criteria for protein-energy wasting according to the International Society for 

Renal Nutrition and Metabolism  

Serum chemistry 

• Albumin < 38 g/l (by bromocresol method, approximately 35 g/l by 

immunonephelometry) 

• Transthyretin (prealbumin) < 300 mg/l 

• Cholesterol < 100 mg /dL (26mmol/L) 

Body mass 

• Body mass index < 23 kg/m2   

• Unintentional body weight loss >5% over 3 months or >10% over 6 months 

• Total body fat <10% 

Muscle mass 

• Muscle loss > 5% over 3 months or 10% over 6 months 

• Reduced arm muscle area > 10% in relation to 50th percentile  

• Interdialytic creatinine appearance   

Dietary intake 

• Spontaneous dietary protein intake < 0.80 g/kg/d for at least 2 months 

• Spontaneous dietary energy intake < 25 kcal/kg/d for at least 2 months 

 

PEW is recognized as an independent determinant of morbidity and mortality in ESRD-HD 

patients (for review see ref (2)). It can be estimated that yearly mortality rates in 

malnourished ESRD-HD patients are about 25 to 30% (5-7). Prospective studies have 

shown a strong association between nutritional parameters and morbidity and mortality 
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among ESRD-HD patients, serum albumin and transthyretin showing the strongest 

predictive value (7-10). Changes in serum albumin and transthyretin over a period of a 

few weeks provide additional prognostic information (11-13). PEW is rarely a direct cause 

of morbidity and mortality but rather contributes to a fatal outcome by worsening the 

adverse effects of cardiovascular diseases and infections which are the commonest 

causes of death in ESRD-HD patients (2, 14, 15). The protective effect of a high BMI on 

morbidity and mortality risk, which is part of the so-called reverse epidemiology, 

indirectly confirms the importance of nutritional factors in the outcome of ESRD-HD 

patients (16-18).  

 

2. Pathophysiology of Protein-energy Wasting in ESRD-HD 
 

The causes of PEW in haemodialysis patients are similar to those commonly found in 

other chronic diseases, such as chronic respiratory disease, chronic heart failure, chronic 

infection and cancer (19). These causes, including anorexia, physical inactivity, anaemia, 

inflammation, insulin resistance and hypogonadism, constitute the nutritional phenotype 

of these chronic diseases (20).  

In ESRD-HD, although anorexia is the major cause of PEW, factors specific to the 

syndrome itself may contribute to the development of PEW, including acidosis, hormonal 

derangements, intestinal dysbiosis, chronic inflammation and dialysis procedures (Table 

2). A decrease in physical activity also may contribute to the PEW observed in ESRD-HD 

patients. 

 
Table 2 

Causes and mechanisms of PEW in CKD/ESRD patients 

1. Reduced protein and energy intake 

a. Anorexia 

b. Inappropriate dietary restrictions 

c. Gastrointestinal diseases 

d. Depression 

e. Difficulties in food preparation 

f. Socio-economic difficulties 

2. Hypercatabolism  
a. Chronic Inflammation 

b. Hormonal changes 

3.  Metabolic acidosis 
a. Increased protein breakdown 

b. Increased BCAA oxidation 

c. Insulin and IGF-1 resistance 

4.  Dialytic treatment 

a. Loss of amino acids and proteins in the 

dialysate 

b. Inflammatory processes related to dialysis 

c. Hypermetabolism related to dialysis 

d. Loss of residual renal function 

5.  Comorbidities and life style 

a. Comorbidities (diabetes, heart failure, 

ischemic heart disease, peripheral vascular 

disease) 

b. Sedentary lifestyle 

6.  Reduced physical activity 
Reduced muscle trophism, reduced self-

sufficiency, reduced performance 
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CKD, chronic kidney disease; ESRD, end stage renal disease; GH, growth hormone; IGF, 

insulin-like growth factor 
 

2.1. Reduced Nutritional Intakes  
 
Dietary interviews show that a reduction of food intake predominates in the adverse 

energy balance (21-23). The main factors associated with the decrease in spontaneous 

nutritional intake are described in Table 3. Comorbidities, hospitalization, depression, 

low social status, dietary restrictions and multiple medical treatments appear to be 

predominant.  

 

Table 3 

Causes of anorexia in ESRD-HD patients 

Causes of anorexia related to chronic diseases associated with ESRD-HD 

- Co-morbidities 

- Frequent hospitalization 

- Multiple drugs 

- Depression 

- Low social status 

- Increased inflammatory cytokines: plasma TNF-α, Interleukin-2, leptin 

Causes of anorexia related to ESRD-HD 

- Uncontrolled anaemia 

- Restrictive diets: fluids, phosphorus, sodium, potassium 

- Dysgeusia (often associated with zinc deficiency) 

- Inadequate dialysis  

- Digestive symptoms, gastroparesis 

- Uraemic toxins 

- Altered plasma amino acids  

 

Most ESRD-HD patients starting on haemodialysis have a history of long-term dietary 

restrictions of several nutrients (protein, phosphorus, sodium and potassium) aimed at 

preventing and correcting a number of metabolic complications of the uraemic condition 

(24). When patients are started on dialysis, protein requirements increase, whereas 

phosphate, sodium and potassium restrictions are still recommended, along with 

adequate energy intake. Thus, these patients need careful dietary counselling to redefine 

specific dietary targets aimed at preventing PEW (24). 

In ESRD-HD patients, the pathogenesis of anorexia, per se, is poorly understood. It has 

been proposed that uraemic toxins as middle molecules, chronic inflammation, altered 

amino-acid patterns, leptin, ghrelin, and neuropeptide Y are involved (25, 26). Abnormal 

plasma branched-chain amino acids (BCAA) and tryptophan transport across the blood-

brain barrier may be responsible for abnormal synthesis of neuro-transmitters such as 

serotonin, which may in turn induce anorexia (27). Concordantly, in ESRD-HD patients, 

BCAA supplementation was shown to improve nutritional intakes (28).  

The initiation of dialysis treatment is usually followed by an improvement in food intake. 

Persisting anorexia after dialysis has been started can be due to inadequate dialysis. A 
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total weekly dialysis time of less than 12 hours is associated with decreased protein 

intake, and lower serum albumin and transthyretin (3, 29). Similarly, patients with a 

Kt/V index (a marker of dialysis efficacy) less than 1.1 have characteristically decreased 

muscle mass (3, 30). Non-biocompatible membranes were also demonstrated to be 

responsible for less body weight gain, and lower serum albumin and IGF-1 (31). 

 

2.2. Altered Nutrient Metabolism 
 

2.2.1. Amino Acid and Protein Metabolism 

 

2.2.1.1. Plasma and Muscle Amino Acids (AA) 

 

In normal conditions, the kidneys play an important role in AA metabolism: they take up 

glutamine, proline, citrulline, and phenylalanine from the arterial blood, while releasing 

serine, tyrosine, arginine, taurine, leucine, lysine and threonine (32). In renal failure, the 

suppression of these exchanges participates in the plasma AA abnormalities. In ESRD-HD 

patients, plasma AA concentrations are characterized by a relative decrease in essential 

AA (EAA), with the exception of methionine and serine, and increases in citrulline and 

aspartate (32, 33). The net effects are such that tyrosine and histidine are considered as 

additional essential AA in renal failure (34).  

 

2.2.1.2. Hepato-splanchnic Amino Acid Metabolism  

 

In normal conditions, after a protein meal the liver retains approximately 70% of the AA 

delivered by the portal vein for protein synthesis (25%) and urea synthesis (45%). Of 

importance, the AAs released in the hepatic veins, representing about 30% of ingested 

AA, are characterized by an enrichment in EAA, particularly in BCAA.  Ureagenesis 

constitutes a quantitative loss of AA but makes it possible to obtain a qualitative gain in 

the AA composition (35, 36).  

In renal failure, following a protein meal the hepatic AA uptake is decreased and the 

enrichment in EAA of the AA released by the liver does not occur. These abnormalities of 

hepatosplanchnic AA metabolism participate in the abnormal plasma AA pattern of renal 

failure (36). Of interest, experimental acidosis reproduces these changes in AA handling 

by the splanchnic area (37). 

 

2.2.1.3. Protein Metabolism 

 

ESRD-HD patients characteristically have an increase in whole-body and muscle protein 

turnover (38, 39), together with an increase in their albumin and fibrinogen fractional 

synthesis rates (39). Such an increase in protein turnover accounts for the vulnerability 

of protein stores when protein intakes are inadequate or during inflammatory stress or 

acidosis. The main causes of reduced lean body mass in ESRD-HD patients are given in 

Table 4.  

Acidosis was shown to be responsible for a cortisol-dependent stimulation of muscle 

protein degradation, through the cytosolic ATP-ubiquitin dependent proteolytic system, 

and for irreversible BCAA catabolism (40). Muscle proteolysis, by providing ammonium 

radicals for renal bicarbonate generation, is integrated into the physiological fight against 

metabolic acidosis. However, during renal failure, chronic acidosis is responsible for a net 

loss of lean body mass. Moreover, acidosis is involved in the pathogenesis of insulin 

resistance (41), hyperparathyroidism (42) and growth factor dysfunction (43). Diabetes 

is responsible for protein depletion, as reflected by decreased muscle mass, serum 
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albumin and transthyretin (44, 45). These effects can be at least in part reversed by 

bicarbonate administration (46, 47). 

 

Table 4 

Factors associated with loss of lean body mass in ESRD-HD patients 

- Reduced protein-energy intakes 

- Reduced physical activity 

- Metabolic acidosis 

- Inflammation and oxidative stress 

- Hormonal derangements: insulin resistance, abnormal growth factor action, androgen 

deficiencies, hyperparathyroidism, decrease in 1,25-OH vitamin D synthesis, increase in 

catabolic hormones (cortisol, glucagon, adrenaline) 

- Diabetes mellitus 

- Nutrient losses during dialysis 

- Dialysis–induced decrease in protein synthesis 

- Dialysis induced increase in protein catabolism 

 

The role of inflammation in increasing protein catabolism in ESRD-HD patients has been 

underlined (48). Systemic inflammation, related to dialysis or not, has been reported in 

about 50% of ESRD-HD patients (Table 5). Its frequency appears to be higher in 

severely malnourished patients (49). The influence of genetic polymorphisms on 

inflammatory activity now appears of key importance (49), and should be considered in 

the design of interventional studies (50). As an example, polymorphisms in the promotor 

regions of Interleukin-10, TNF-α and Interleukin-6 can each influence nutritional status 

and morbidity (51). Cytokine activation, the common factor of protein catabolism and 

atherosclerosis, is responsible for the MIA (malnutrition-inflammation-atherosclerosis) 

syndrome and accounts for the high prevalence of vascular complications in 

malnourished ESRD-HD patients (48). Evidence exists that derangements of intestinal 

microbiota as well as increased permeability of the intestinal barrier, may play a pivotal 

role in the pathogenesis of the chronic inflammatory status of ESRD (52-54). 
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Table 5 

Causes of inflammatory syndrome in ESRD-HD patients 

Dialysis-independent inflammation  

Renal failure per se 

Inflammatory kidney disease 

Associated inflammatory diseases 

Reduced cytokine clearance 

Chronic heart failure 

Chronic infections (e.g. dental)  

Intestinal dysbiosis 

Dialysis-dependent inflammation 

Cytokine and complement activation due to the use of non-biocompatible dialysis 

membranes  

Dialysis fluid contamination 

Uptake of pyrogens from the dialysis fluid 

Uptake of endotoxins 

Infection of the dialysis fistula 

 

Besides the loss of glucose, amino acids and water-soluble vitamins, the haemodialysis 

procedure by itself may induce a decrease in plasma amino acid concentrations and a 

subsequent decrease in muscle protein synthesis (55). Haemodialysis is also associated 

with cytokine activation and an increase in protein catabolism (56). 

 
2.2.2. Energy Metabolism 

 

2.2.2.1. Energy Expenditure 

 

Most studies of resting energy expenditure (REE) in ESRD-HD patients have reported REE 

values similar to those of controls (57-62). In three studies REE was however found to be 

higher than control values (63-65). Regarding the determinants of REE in this setting, it 

has been shown that severe hyperparathyroidism (66), elevated serum IL-6 (62) and 

leptin (67) are associated with increased REE. In one study conducted in ten ESRD-HD 

patients, REE was measured using a whole-room indirect calorimeter (63). 

Measurements were done continuously: for 2 hours before HD, during 4 hours of HD, for 

2 hours after HD, and separately on a non-dialysis day after 12 hours of fasting. Age-, 

sex-, and body mass index-matched healthy volunteers were used as control subjects. 

ESRD-HD patients had a significantly higher REE on a non-dialysis day as compared with 

control subjects. REE further increased significantly during the HD procedure (63). From 

these studies it can be summarized that REE in ESRD-HD patients is most often similar to 

that of controls, but that dialysis procedures, inflammation and severe 

hyperparathyroidism can be responsible for increased energy expenditure. 

 

2.2.2.2. Glucose Metabolism 

 

Insulin resistance is a characteristic of chronic kidney disease (CKD). The mechanisms of 

CKD-related insulin resistance are incompletely understood.  Among them, the lack of 
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renal breakdown of gluco-regulatory peptides (insulin, glucagon, adrenaline), and the 

presence of uraemic toxins have been advocated. Acidosis is also a cause of insulin 

resistance (41). Insulin sensitivity is negatively associated with systemic inflammation 

and positively with total plasma ghrelin in non-diabetic ESRD-HD patients, suggesting a 

potential role of ghrelin in preserving insulin sensitivity (68).  

Insulin resistance in CKD mainly concerns non-oxidative glucose metabolism, i.e. its 

storage in the form of glycogen (58, 69). As a consequence, ESRD-HD patients 

characteristically have accelerated starvation metabolism: after 12 hours of starvation, 

fat oxidation accounts for two thirds of the non-protein contribution to REE in ESRD-HD 

patients as compared with only half in controls (58, 69).  

Another important consideration is that (after insulin therapy) renal failure is the 

commonest cause of hypoglycaemia in hospitalized patients (70). Blood glucose control is 

impaired in CKD due to the loss of renal gluconeogenesis and a decreased ability of the 

liver to ensure euglycaemia in all circumstances (71, 72). Particularly, reduced clearance 

of antidiabetic drugs can induce hypoglycaemia. Such abnormalities can also account for 

the occurrence of hypoglycaemia following intradialytic hypertonic glucose 

administration.  

 

2.2.2.3. Lipid Metabolism 

 

The main abnormality of circulating lipids in ESRD-HD patients is hypertriglyceridaemia 

(73). It reflects a decrease in lipid particle turnover, mainly due to reduced lipoprotein 

lipase, hepatic lipase and lecithin-cholesterol-acyl transferase (74). As a consequence, in 

ESRD-HD patients, the clearance of exogenous long-chain triglycerides (LCT) is found to 

be decreased (75). Essential fatty acid deficiency has also been reported in ESRD-HD 

patients (76). It is reported that a higher dietary omega-6 to omega-3 ratio appears to 

be associated with worsening inflammation over time and a trend toward a higher risk of 

death in haemodialysis patients (77). The role of carnitine deficiency is still debated (78). 

In malnourished ESRD-HD patients, prolonged intradialytic parenteral nutrition (IDPN) 

with LCTs from soybean oil did not alter basal plasma triglycerides, cholesterol or 

phospholipids (79), and induced favourable changes in lipoproteins: decrease in Lp(a) 

and increase in apo C-II (80). Five weeks’ administration of soybean-oil or olive-oil based 

IDPN were reported to have no adverse effect on inflammatory and oxidative markers 

(81). 

 

2.3. Reduced Rhysical Activity 
 

ESRD-HD patients characteristically have a decrease in muscle mass, performance, 

endurance and oxidative capacity (82). Consistently, muscle biopsies show a decrease in 

oxidative muscle fibres, i.e. type 1 fibres, which are responsible for endurance exercise 

(83). The muscle of ESRD-HD patients is thus similar to that described in other chronic 

diseases such as chronic obstructive pulmonary disease (84). The cause of this chronic 

disease-related muscle pathology is not fully understood. However, reduced physical 

activity probably plays an important role.  

Spontaneous physical activity has been measured using pedometers. In non-disabled 

ESRD-HD patients, the number of steps during daily activities was 48% of that of 

comparable healthy individuals. Moreover, the number of steps correlated positively with 

haemoglobin concentration, total body water and bioelectrical impedance-derived phase 

angle, and negatively with age and extracellular mass/body cell mass index (85). In a 

cohort of 608 ESRD-HD patients, the level of self-reported physical activity was low when 
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compared with age-matched healthy subjects (86). In the same study, the presence of 

several barriers to exercise and a non-proactive attitude by the healthcare staff impacted 

significantly and negatively on patients’ self-reported levels of physical activity (86). 

In ESRD-HD patients, weekly energy expenditure correlates positively with quality of life 

(87), while low physical activity is associated with higher mortality rates (88) and a 

decrease in bone mass (89). 

Experimental and clinical data have shown that exercise is able to improve muscle 

energy and protein status. Exercise decreases muscle inflammation and increases 

oxidative capacity, the number of type 1 fibres, GLUT-4-associated glucose transport, 

insulin sensitivity, cell energy control, and protein balance. These effects of exercise are 

particularly mediated by the activation of NFB, PPARs  and , AMP kinase, IgF-I and 

IGF-II (90-94).   

Studies on muscle biopsies from ESRD-HD patients showed improvement in oxidative 

capacity after 12 weeks of exercise training (95), and transcriptional changes in genes 

favouring protein anabolism after 12 and 24 weeks (96). Endurance training in ESRD-HD 

patients was shown to improve peak oxygen consumption, peak work rate, endurance 

time and constant work rate (97-99). Exercise similarly improved insulin sensitivity, 

endothelial function, physical functioning and psychological status, leading to an 

improvement in quality of life (100-102). Physical activity was also shown to improve the 

efficacy of both intradialytic parenteral and oral nutrition in terms of muscle protein 

balance. 

 

3. Gastrointestinal Function and the Kidney-gut Axis 
 

Robust evidence exists that derangements of intestinal microbiota as well as increased 

permeability of the intestinal barrier, may play an important role in the pathogenesis of 

the chronic inflammatory status of ESRD-HD patients (52-54). The intestinal microbiota 

influence nutrition, metabolism, physiology and immune function of the host (52-54). 

Depending on their preferential metabolic pathway, intestinal bacteria can be classified 

as saccharolytic (preferential fermentation of carbohydrates) or proteolytic (preferential 

fermentation of protein) species. Saccharolytic species such as Bifidobacterium and 

Lactobacillus hydrolyze complex polysaccharides into monomeric sugars and then into 

short chain fatty acids (acetate, propionate, butyrate) (52-53). On the other hand, 

proteolytic bacterial species (for example Clostridium and Bacteroides species) produce 

potentially toxic substances (such as ammonium, thiols, phenols and indoles). Normally, 

the kidney easily excretes these “uraemic toxins” after intestinal absorption but with 

decreases in renal function, especially in ESRD-HD patients, they are retained (52-54). 

Nutrient availability, in particular the ratio between carbohydrate and nitrogen 

substrates, is the most important regulator of bacterial metabolism, since it modulates 

the degree of saccharolytic vs proteolytic fermentation. In addition, the uraemic milieu of 

CKD-ESRD patients favours the intestinal secretion of urea which is transformed into 

ammonia by urease producing bacteria (103). This abnormal environment that develops 

during CKD/ESRD is defined as uraemic "intestinal dysbiosis". In addition, uraemia per se 

and complications related to the haemodialysis treatment (hypotension, intestinal 

oedema and ischaemia), are known to be responsible for depletion of the intestinal 

epithelial tight junction proteins, enhancing the permeability of the gut and facilitating 

the translocation of endotoxins, bacteria and bacterial parts to the blood stream (Table 

6) (103). Several measures with putative impact on intestinal status have recently been 

tested for their influence on the generation or concentration of uraemic toxins. These 

include prebiotics, probiotics, synbiotics and intestinal sorbents. Recent data on this topic 
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suggest positive effects on uraemia and on serum levels of the protein-bound uraemic 

solutes that have been linked to cardiovascular events and mortality in ESRD-HD, by 

treating patients with prebiotics, probiotics and synbiotics (for review, see ref 52). The 

use of AST-120, an intestinal sorbent, was able to attenuate uraemia-induced disruption 

of colonic epithelial tight junction, endotoxaemia, oxidative stress and inflammation 

(104).  

 

Table 6 

Effects of CKD/ESRD-HD on the intestinal tract 

Effects Mechanism 

1. Reduced intake of dietary fibre 

Prescribed potassium and phosphorus 

restrictions lead to reduced 

consumption of fruit, vegetables and 

whole grain carbohydrates 

2. Prolonged colonic transit times 

(constipation) 

Multifactorial: dialysis modality, 

lifestyle, inactivity, phosphate binders, 

dietary restrictions, low fluid intake, 

primary renal disease and comorbidities 

(diabetes, heart failure, malnutrition, 

cerebrovascular disease) 

3. Increased amounts of protein available 

for proteolytic bacterial species  

Protein assimilation is impaired in 

uraemia. The reduced ratio between 

carbohydrate and nitrogen available in 

the colon increases the proliferation of 

proteolytic species with generation of 

toxic end-products such as phenols and 

indoles 

4. Changes in the colonic microbiota  

Luminal pH changes due to increased 

blood ammonia concentrations.  

Drug therapy (antibiotics, phosphate 

binders, antimetabolites etc.) 

5. Preferential growth of pathogenic 

bacteria 

Use of antibiotics and oral iron 

supplementation. 

6. Loss of the intestinal epithelial barrier 

function of the intestine 

Depletion of the intestinal epithelial 

tight junction proteins caused by 

uraemia, haemodialysis complications 

(hypotension, intestinal oedema and 

ischaemia), micro-bleeding caused by 

the systemic coagulation alterations 

typical of uraemia 

 

 

4. Nutritional Assessment in ESRD-HD Patients 
 
Given the prognostic impact of PEW, the nutritional status of ESRD-HD patients should be 

assessed regularly (105). 
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4.1. Clinical Assessment 

 

Dietary interview should be performed twice a year in order to look for possible 

inadequacy of nutrient intake and to correct it. Dry body weight loss is associated with 

poor outcomes (106). Body mass index (BMI) should be calculated monthly. As in other 

chronic diseases, BMI is positively correlated with long-term survival (107). However, in 

addition to the assessment of BMI, body composition should be evaluated, since the 

presence of sarcopenic obesity, a condition in which a normal BMI may conceal low 

muscle mass and excess adipose tissue, is frequent (108, 109), and negatively affects 

long-term survival in CKD and ESRD-HD patients (110, 111). 

 
4.2. Serum Proteins 
 

Both serum albumin and transthyretin are influenced by non-nutritional parameters such 

as inflammation, liver function, hydration status, gender and age (112, 113). However, 

in chronically depleted patients such as those with ESRD-HD, these serum proteins also 

reflect protein intake and nutritional status (2, 3, 114). Serum albumin and transthyretin 

should be measured before an HD session. Serum albumin correlates positively with 

normalized protein nitrogen appearance (nPNA), lean body mass, serum cholesterol and 

transthyretin (3), and is recognized as an independent marker of survival (8, 10, 115). 

Because serum transthyretin is linked to the metabolism of the transthyretin-retinol-

binding-protein-retinol complex its serum concentration is increased in renal failure. As a 

consequence, serum transthyretin can only be considered as a nutritional marker in the 

presence of stable renal function (116, 117). In ESRD-HD patients, transthyretin is 

generally a reliable marker of nutritional status (8-10) and, since it has a shorter half-life 

than serum albumin, also the efficacy of nutritional intervention (118). A serum 

transthyretin of less than 300 mg/l is a strong predictor of mortality, independently from 

albumin (8-10, 119). In addition, an improvement in nutritional status as assessed by a 

serum transthyretin increase by 30 mg/l, obtained by nutritional support, correlates with 

reduced mortality and morbidity (118). 
 

4.3. Urea and Creatinine-related Parameters 
 

The normalized protein nitrogen appearance nPNA (g protein/kg/day), can be calculated 

from pre- and post-dialysis plasma urea and the urea dilution space (120).  In stable 

patients the nPNA is considered to reflect protein intake (121, 122), and can be 

calculated by formulas using data from midweek dialysis (Box 1) (120). It correlates 

with lean body mass, serum albumin and transthyretin. Optimal values of nPNA are 1.2 

to 1.4 g/kg/day. nPNA values of less than 1 g/kg/day are associated with increased 

hospitalization and mortality rates (7, 123, 124).  

Pre-dialysis creatinine is a marker of muscle mass.  Several algorithms have been 

developed for the estimation of lean body mass (LBM) from serum creatinine 

concentration or the amount of creatinine in the dialysate (125, 126). However, these 

equations frequently under- or overestimate LBM and should only be used in a context 

where no other method is available for the assessment of LBM or muscle mass; in 

addition, the lack of reference values allows only for intra-individual assessment of body 

composition over time.  
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Box 1 

Midweek equation for the estimation of nPNA (120) 

Equation 1. For patients with little or no residual urine output (24h urine output < 

200ml). 

 

nPNA = BUN/(25.8+1.15*KtV+56.4/KtV)+0.168 

 

Where BUN is pre-haemodialysis blood urea nitrogen in mg/dL. 

 

Equation 2. For patients with residual urine output > 200ml/24h, pre-haemodialysis BUN 

must be adjusted as for the following equation:  

 

Adjusted BUN = BUN [1+(0.79+3.08/KtV)*Kr/V] 

Where BUN is pre-haemodialysis blood urea nitrogen in mg/dl, Kr is residual urinary urea 

clearance in mL/min and V is urea distribution volume, in litres. 

 

4.4. Body Composition Assessment 
 

Bio-impedance analysis (BIA) has been validated for body composition measurements in 

ESRD-HD patients (127-130). Due to changes in water and ion compartments related to 

the HD procedure, it was initially considered that BIA should ideally be performed during 

an interdialytic day. However, reliable measurements have been reported when BIA is 

performed before dialysis, 15 minutes and two hours after dialysis (131, 132). The main 

information derived from BIA is total tissue fluid content, equivalent to total body water 

and cell mass. Recently, BIA has largely been replaced by bioelectric impedance 

spectroscopy (BIS) in research and clinical practice because of the recognition that it 

provides more accurate estimates of total body water (TBW) and intracellular water 

(ICW), particularly when fluid distribution may be altered (133). The advantage of BIS is 

that it uses a whole range of frequencies between 5 and 1000 kHz, while BIA generally 

uses only 1 to 4 frequencies. At lower frequencies the current passes exclusively around 

the cells, while in higher frequencies the current passes through the cell membranes, 

allowing a precise assessment of extracellular water (ECW) and intracellular water (ICW). 

BIS then uses equations based on a 3-compartment model to estimate lean body mass 

(LBM), fat mass (FM), total body water (TBW) and ICW. Nevertheless, despite a good 

correlation with whole body magnetic resonance imaging (MRI), precision in the single 

patient is low in estimating muscle mass, being highly influenced by hydration status 

(134), requiring standardization of the method. If repeated measurements are planned, 

they should be obtained between 15 and 120 minutes after the dialysis session, when 

patients are closer to their dry weight. 

Currently, DEXA is the reference method for body composition measurement in ESRD-HD 

patients. Lean body mass as measured by DEXA has been shown to correlate with serum 

creatinine, arm muscle circumference and handgrip strength (135). DEXA was shown to 

be relevant to the follow-up of body composition in CKD and diabetic ESRD-HD patients 

(45, 136). The main limitation of DEXA is its incapacity to differentiate intra-and extra-

cellular water, resulting in under- or overestimation of LBM. This limitation may be 

resolved by standardization of measurements in conditions closer to the dry weight. 

Recent consensus statements on the definition of sarcopenia, recommend the use of 

DEXA for the assessment of the appendicular lean soft tissue (ALST) instead of whole 

body LBM (137-141), which is the lean soft tissue of arms and legs and correlates better 

with function and mobility.  
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Recently, the use of ultrasound for the assessment of quadriceps skeletal muscle mass 

has been studied in renal patients. Ultrasound is widely available in dialysis units, safe, 

non-invasive and can be easily applied at the bedside. In addition, the ultrasound 

methodology does not require specialized staff (i.e. radiologists) and can be performed 

by any clinician after proper training. It allows a quantitative (by evaluating cross-

sectional diameter and area) and qualitative (by evaluating muscle echogenicity) 

assessment of the quadriceps skeletal muscle. Available data suggest a high intra- and 

inter-reliability of the methodology in renal patients, even in critically ill patients (142). 

In addition, the assessment of quadriceps muscle mass of ESRD-HD patients was able to 

identify those subjects with worse nutritional status when patients were stratified by BMI 

and MIS score (143). The available data also suggest no need to perform measurements 

at a consistent time relative to the haemodialysis sessions, since no differences were 

found between measurements performed before and after dialysis (142, 143). More 

studies are still needed to validate ultrasound against DEXA or the putative gold standard 

techniques such as computerized tomography or magnetic resonance imaging, and to 

define normal ranges for muscularity to allow a uniform diagnosis of low muscle mass. 
  

4.5. Recommendations for Nutritional Status Monitoring 
 

The follow-up of nutritional parameters is mandatory in order to detect the malnourished 

ESRD-HD patients who require nutritional intervention. Table 7 gives a summary of the 

follow-up guidelines for ESRD-HD patients recommended by ESPEN, US National Kidney 

Foundation and EBPG (105, 120, 144, 145).  

 

Table 7 

Monitoring of nutritional parameters (from 105, 120, 144, 145). 

Nutritional parameter  Interval (months) 

Dietary interview    6-12 

BMI      1 

nPNA      1 

Unintentional weight-loss                         3-6 

Serum albumin    1-3 

Serum transthyretin (prealbumin)  1-3 

 

The unstable and high risk patient may require monitoring at shorter intervals. Severe 

PEW compromising the medium-term prognosis can be detected by a decrease in BMI to 

below 23, a weight loss of more than 10% within 6 months and the alteration of protein 

markers of malnutrition: serum albumin < 38 g/l, transthyretin < 300 mg/l (2). 
 

5. Nutritional Requirements 
 

5.1. Energy Requirements  
 

Energy requirements generally vary between 30 and 40 kcal/kg per day and the 

international recommendations are summarised in Table 8. A number of descriptive 

studies have reported actual energy intakes often as low as 22-24 kcal/kg/day which 

thus may contribute to PEW. The recommended daily energy intakes vary according to 

age, gender and physical activity. The caloric supply should take into account the 

abnormalities of glucose metabolism and fat clearance. Fat should account for 30-40% of 
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energy supply. The addition of carnitine (0.5 to 1 g daily) has been proposed when 

plasma free carnitine is reduced.  
 

Table 8 

Recommendations for protein and energy supply in adult patients on routine 

haemodialysis (from 105, 120, 144, 145). ESPEN: European Society for Clinical 

Nutrition and Metabolism. NKF: the US National Kidney Foundation. EBPG: 

European best practice guidelines. 

    ESPEN    NKF  EBPG 

Protein intake   1.2–1.4     1.2   ≥ 1.1 

 g/kg/day       (>50% HBV) (>50% HBV) 

Energy intake      35  <60 y: 35  30-40 

 kcal/kg/day    >60 y: 30  adjusted by age,  

         gender & activity  

 

5.2. Protein Requirements 
 

A meta-analysis analysed the available nitrogen balance data to establish new 

recommendations for the amount of protein required by healthy adults (146). The 

median requirement of protein for healthy adults has been estimated to be 0.65g of good 

quality protein/kg/day and the recommended dietary allowance (97.5th centile) is 0.83 

g/kg/d. Although a neutral or positive nitrogen balance can occur in ESRD-HD patients at 

an intake of 1.0 g protein/kg/day (147, 148), the NKF (120), ESPEN (144, 145) and 

EBPG (105) propose that a higher protein intake, from 1.1 to 1.4 g/kg/day, is generally 

needed.  

Phosphorus intake should be limited to 10-15 mg/kg/day. As phosphorus and protein are 

combined in nutrients with an average ratio of 10-13 mg phosphorus/g protein, most 

ESRD-HD patients who have an adequate protein intake will need phosphate binders to 

prevent an increase in serum phosphorus. The advice of a renal dietician will be helpful 

to choose foods low in phosphorus (149). Higher dietary phosphorus intakes and higher 

dietary phosphorus-to-protein ratios were reported to be associated with increased risk 

of death in ESRD-HD patients, even after adjustments for serum phosphorus, phosphate 

binders and their types, and dietary protein, energy, and potassium intakes (150).  

 

5.3. Mineral and Micronutrient Requirements 

 

Due to dialysis-induced losses, water-soluble vitamins should be supplied: folic acid 

(1mg/day), pyridoxine (10–20 mg/day) and vitamin C (30–60mg /day) (105, 120, 144, 

145). Vitamin D should be given according to serum calcium, phosphorus and 

parathyroid hormone levels. Infection, surgery, and a large quantity of glucose infusion 

may increase the need for thiamine. The common dietary intake of 0.5–1.5 mg/day can 

be supplemented with a daily oral dose of 1–5 mg of thiamine hydrochloride (149). 

Vitamin E may be prescribed to patients at high cardiovascular risk at the daily dose of 

800 IU of alpha-tocopherol (151). 

Routine HD does not induce significant trace-element losses. However, in depleted 

patients, zinc (15 mg/day) and selenium (50–70 µg/day) supplementation may be 

useful. Mineral requirements are summarised in Table 9. 
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Table 9 

Mineral requirements of patients on ESRD-HD  

Phosphate, mg/d   800-1000 

Potassium, mg/g  2000-2500 

Sodium, g/d        1.8-2.5 

Fluid, ml             1000 + urine volume 

Requirements may differ in acute conditions 

 

6. Methods for Nutritional Support 
 

Nutritional support in ESRD-HD patients includes nutritional counselling regarding 

spontaneous intake, oral supplementation, intradialytic parenteral nutrition (IDPN) and 

enteral nutrition. Nutritional support should be assessed in terms of metabolic efficacy, 

nutritional gain and outcome benefit. The ability of both oral supplementation and IDPN 

to improve protein metabolism during dialysis has been clearly demonstrated. In a 

crossover study, non-diabetic non-malnourished ESRD-HD patients were studied on two 

interdialytic days and during two separate dialysis sessions, with and without test meals 

(protein 46.2 g, carbohydrate 63 g, fat 75 g) (152). Whole body protein metabolism was 

studied by primed constant infusion of L-(1-13C) valine. Both during interdialytic days and 

dialysis sessions, oral supplementation changed a negative whole body protein balance to 

a positive protein balance. Similarly, in non-malnourished ESRD-HD patients, a study of 

whole body and forearm protein metabolism during a constant infusion of L-(1-13C) 

leucine and L-(ring-2H5) phenylalanine showed that IDPN could reduce protein catabolism 

and improve protein synthesis both in the whole body and the forearm area (153).  

The recommended management of ESRD-HD patients has been addressed in several 

consensus papers (1, 105, 144, 145). It includes counselling by a dietician, oral 

nutritional supplements, IDPN and enteral nutrition via tube feeding. Regarding the 

strategy of nutritional support, it must be underlined that both oral supplementation and 

IDPN can only provide the equivalent of 7 to 10 kcal/kg/day and 0.3 to 0.4 g 

protein/kg/day. Therefore oral supplementation and IDPN only make it possible to reach 

the recommended levels of protein and energy intakes when spontaneous oral intakes 

are already at least 0.8 g protein and 20 kcal/kg/day (155). 

 

6.1. Dietician Counselling 

 

Dietetic counselling, the first step in nutritional support, has been reported to improve 

nutritional status (156). Early and regular dietary counselling is the first and most cost-

effective intervention aimed at preventing and treating PEW in ESRD (157). The 

beginning of haemodialysis is accompanied by changes in nutritional needs as compared 

with previous restricted regimens (24, 154). On these grounds, an early and 

individualized intervention by the healthcare team is needed to prevent erroneous eating 

habits (for example reduced protein intake) that could lead to PEW (158). These data 

argue for the need of regular (twice yearly) dietician intervention in dialysis patients in 

order to quantify and adjust spontaneous intakes and to adapt oral supplementation. 
 

6.2. Oral Nutritional Supplements 
 

Oral nutritional supplementation (ONS) represents the first step of nutritional 

intervention when dietary counselling alone fails. Various ONS have been tested in ESRD-
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HD patients including isolated administration of amino acids, protein or glucose polymers, 

or associated protein and energy supplies, providing 200-600 kcal and 8 to 25g of 

protein daily. A systematic review with meta-analysis addressing protein-calorie oral and 

enteral supplements showed an increase in serum albumin by 2.3 g/l (95% confidence 

interval, 0.37-4.18) in ESRD-HD patients (159). Six controlled studies conducted in 

malnourished ESRD-HD patients reported a positive effect of oral supplementation on 

nutritional parameters (28, 160-164). Interestingly, an improvement of Karnofsky scale 

(118, 164) and spontaneous feeding during oral supplementation was also reported (28).  

Three premises should be considered in the optimal timing of ONS consumption: 1) to 

make a nutritional supplementation and not a nutritional substitution; 2) to shorten the 

length of overnight starvation by a late evening ONS; 3) to reduce the dialysis-induced 

negative protein balance. Taking into account this rationale, the following timing for ONS 

may be proposed: one hour after breakfast, one hour after lunch, late in the evening (eg 

9:00, 14:00, 22:00), and during the first hour of each dialysis procedure.  Renal specific 

supplements may afford some advantages compared to standard commercial 

preparations, since they have higher caloric density (1.5-2 kcal/ml) and increased protein 

content (75-81 g/l), with reduced content of potassium, sodium and phosphorus in terms 

of phosphorus/protein ratio (mg P/g of protein). 

 

6.3. Intradialytic Parenteral Nutrition (IDPN) 
 

IDPN is typically cyclic (three times weekly) PN given through the venous line of the 

dialysis circuit. It has been recommended by the ISRNM consensus as the last resource 

to supplement spontaneous nutrient intake in ESRD patients on haemodialysis diagnosed 

with PEW, or at risk of PEW, when compliance with ONS is low, or when it is not tolerated 

(158). The following technical rules have been proposed in order to ensure its good 

tolerance (165): a) Do not start IDPN if serum triglycerides > 300 mg/dl (about 3 

mmol/l); b) serum glucose levels should be maintained between 110-180 mg/dl, if serum 

glucose > 180 mg/dl add subcutaneous insulin as rapid action analogues, however do not 

give insulin after the 3rd hour of dialysis; c) IDPN should be infused at a constant rate 

during 4-hour dialysis sessions; d) IDPN delivery should be progressively increased from 

8 ml/kg/dialysis session (representing 500 ml in a 60kg patient) during the first week, to 

a maximum of 16 ml/kg/IDPN, without exceeding 1000 ml/HD session; e) IDPN should 

be associated with controlled ultrafiltration, volume per volume; d) sodium losses due to 

ultrafiltration should be compensated (equivalent of 75 mmol Na+ per litre of IDPN 

solution (5).  

As reported above, ESRD-HD patients are characterized by numerous abnormalities of 

nutrient metabolism concerning both amino acid and energy metabolism. HD sessions 

are responsible for a decrease in total plasma amino acids that has been shown to alter 

protein synthesis (55). It has been shown that the intradialytic infusion of amino acids 

prevents this decrease in plasma amino acid concentrations and the subsequent decrease 

in protein synthesis (55, 153).  

Both glucose and lipid metabolism are altered in ESRD-HD patients. On one hand, the 

use of hypertonic glucose is limited by glucose intolerance and the risk of post-dialysis 

hypoglycaemic accidents. On the other hand, despite the fact that exogenous lipid 

clearance is reduced, fat represents the preferential fuel in ESRD-HD patients during the 

post-absorptive phase (58).  Other arguments in favour of providing fat emulsions in 

association with glucose during IDPN are: a) the essential fatty acid deficiency reported 

in ESRD-HD patients (76); b) the higher energy/volume ratio of fat emulsions and their 
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iso-osmolarity which make their intravenous infusion well-tolerated; c) the lack of effect 

of fat emulsions on dialysis efficiency (81, 118). 

IDPN provides up to 800-1200 kcal three times weekly, in the form of glucose and fat 

emulsions, and 30 to 60 g of protein, as amino acids. IDPN improves energy and protein 

balance as well as albumin synthesis rates (153, 166). Despite the lack of studies 

demonstrating any positive effect of IDPN on mortality, in more than thirty studies, 

including five prospective, randomized, controlled trials, IDPN has been shown to 

improve nutritional parameters (for reviews, see 144, 145)(167, 168). 

IDPN should not be used as a long-lasting therapy.  ONS should be continued or 

restarted, and IDPN should be discontinued based on the following criteria: stable serum 

albumin > 38 g/l for 3 months, clinical examination of improved nutritional status, 

increases in protein and energy oral intake to > 1.0 g/kg/day and to >30 kcal/kg/day 

respectively (118).  

 

6.4. Enteral Nutrition 
 

When PEW is associated with spontaneous intakes less than 0.8 g protein and 20 

kcal/kg/day, daily nutritional support is needed to ensure recommended nutritional 

intakes. In these patients, enteral nutrition should be preferred to parenteral nutrition 

(144). Only a few studies have addressed the use of enteral nutrition in dialysis patients. 

Enteral nutrition is most often used when oral supplementation and/or IDPN are not able 

to satisfy nutritional requirements, as in conditions such as severe anorexia, swallowing 

troubles secondary to neurological or head and neck disease, the peri-operative period, 

and stress. In these clinical conditions enteral nutrition may need to consist of total 

enteral nutrition, providing all required macro- and micronutrients. Enteral nutrition has 

been shown to be safe and able to ensure the total nutritional needs of dialysis patients 

(169). Because the duration of enteral nutrition usually exceeds one month in ESRD, a 

gastrostomy is generally needed, mostly in the form of a percutaneous endoscopic 

gastrostomy (PEG) although this may be relatively contraindicated in a patient who has 

extensive intra-abdominal adhesions or fibrosis from complications of earlier chronic 

peritoneal dialysis. 

 

7. Strategy for Nutritional Support 
 

Based on the information presented above, Fig. 1 illustrates a decision tree for the 

management of PEW according to nutritional assessment in the ESRD-HD patient: 

- In patients presenting with mild malnutrition as defined by insufficient 

spontaneous intake, dietary counselling, and, if necessary, ONS should be prescribed. 

- In patients exhibiting severe malnutrition, with spontaneous intakes of at least 20 

kcal/kg/day: dietary counselling and ONS should be prescribed; IDPN is indicated in 

patients non-compliant with ONS; EN can be necessary when ONS or IDPN are unable to 

improve nutritional status. 

- In patients exhibiting severe malnutrition, with spontaneous intakes less than 20 

kcal/kg/day, or in stress conditions: both ONS and IDPN are unable to provide 

satisfactory nutritional supply and are not recommended; daily nutritional support is 

necessary and EN should be preferred to PN; central venous PN is indicated when EN is 

impossible or insufficient. 



Copyright © by ESPEN LLL Programme 2018 

19 

 

 
Fig. 1. Algorithm for the management of protein-energy wasting  

in ESRD-HD patients (145). 

 

IDPN: intradialytic parenteral nutrition. Therapeutic decisions should be adapted 

according to nutritional monitoring. 

 

8. Perspectives to Improve Nutritional Management 
 

Ensuring nutritional intake at the level of nutritional requirements, as defined by 

available recommendations, is the usual goal of nutritional support. However, several 

concepts have evolved in the last few years concerning the treatment of malnutrition in 

dialysis patients. They include different treatments aimed at improving appetite, to 

decrease protein breakdown and/or to promote protein synthesis.  
 

8.1. Optimizing Nutrition Support 
 

8.1.1. Essential Amino Acids 

 
In order to improve protein nutrition, another concept for nutritional support has been 

developed which consists of the provision of nutrients with a specific ability to promote 

protein synthesis. This concept was the basis for the use of essential amino acid 

supplements. Indeed some essential amino acids directly activate protein synthesis 

(170). In elderly ESRD-HD patients, branched-chain amino acid supplements have been 

shown to improve both nutrient intake and nutritional status (28). The effects on protein 

accretion of essential amino acids (171) and leucine (172) reported in the elderly, now 

require confirmation in controlled trials in dialysis patients. Protein synthesis could also 

be improved by the nature of protein delivery either in terms of timing or composition of 
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protein supply (173). Hence, the modulation of protein and amino acid supply may be a 

way to counteract altered protein synthesis in ESRD-HD patients.  

 

8.1.2. Fibre 

 

According to the NHANES III data, the CKD population has a lower fibre intake than that 

recommended for the healthy population (15.4 g/day versus 25-30 g/day respectively) 

(174). Recent data suggest that supplementation with dietary fibre could positively 

influence the intestinal environment and help to treat intestinal dysbiosis, leading to 

reduced concentrations of plasma protein-bound uraemic toxins, urea and creatinine (54, 

175). Considering the available data, it is recommended that ESRD-HD patients achieve 

daily dietary fibre intakes similar to those recommended for the healthy population (25 

g/day). Increasing dietary fibre intake poses a possible risk from the concomitant 

increase in potassium and phosphorus intake. However, timely counselling by renal 

dietitians and nephrologists could allow an increased fibre intake from a choice of low 

potassium fruits and vegetables, and possibly fibre supplements without added 

phosphorus.  

 

8.1.3. Omega-3 fatty Acids 

 

Recent studies in healthy elderly patients demonstrated that ω-3 PUFAs seems to exert a 

positive effect in the muscles, stimulating protein synthesis and counteracting anabolic 

resistance and sarcopenia (176). Few data are currently available regarding the effects of 

ω-3 PUFAs on nutritional status in ESRD-HD patients. Recent data suggests improvement 

of nutritional and metabolic parameters (177), especially regarding inflammatory 

markers such as IL-6, TNF-α, C-reactive protein and IL-10 (178). Randomized clinical 

trials are needed to confirm the putative positive effects of ω-3 PUFA supplementation on 

the nutritional and inflammatory status of ESRD-HD patients. 

 

8.2. Anti-inflammatory Drugs 
 

The administration of pentoxifylline together with amino acids was reported to reduce 

whole body protein catabolism evaluated during labelled leucine infusion and to increase 

serum albumin (180-182), suggesting that the reduction of protein catabolism may be 

another prospect in the treatment of malnutrition in dialysis patients. Etanercept (an 

antagonist of TNF-α), administered for 44 weeks, led to an increase in serum albumin 

and transthyretin (183). The administration of IL-1 antagonists in patients on dialysis 

presenting chronic inflammation showed a significant improvement of CRP and IL-6, 

although large-scale studies are needed to understand the effects on nutritional status 

(1).  

 

8.3. Exercise Training 
 

Exercise also appears to be an efficient means to improve protein status. As shown 

above, exercise was reported to promote muscle energy and protein anabolism in dialysis 

patients. There is ample evidence that exercise can improve fitness (VO2 peak), physical 

functioning, and some cardiovascular risk factors in the dialysis population (102). 

Although the association of endurance and resistance training seems to be confirmed, 

there have been few comparative studies, and there is no consensus regarding the most 

beneficial regimen or the one most acceptable to large numbers of patients (for review, 
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see 102).  Patients should be checked for possible cardiovascular contraindications before 

initiating exercise training. 

 

8.4. Anabolic Hormones 
 

In a controlled, randomized, double blind study, the administration of nandrolone 

decanoate was associated with an increase in muscle mass, as assessed by pre-dialysis 

creatinine and DEXA, and an improvement in muscle performance (184). The European 

Best Practice Guidelines for nutrition in dialysis state that: “In cases of severe 

malnutrition resistant to optimal nutritional intervention, a course of androgens should be 

considered in ESRD-HD patients for three to 6 months (Evidence level II); Patients 

should be monitored at regular intervals for side effects (hirsutism, voice change, 

priapism, alteration in plasma lipids, liver tests and prostatic markers) (Evidence level 

II); Patients with a known prostate cancer should not receive androgens (Evidence level 

II) (105)”.  

Similarly, anabolic effects have been obtained in pilot studies with recombinant growth 

hormone and insulin-like growth factor-1 in adult dialysis patients (185, 186). However, 

more data are needed before a firm recommendation for their use in clinical practice 

(187). 

 

8.5. Daily Dialysis 

 
Maintaining an adequate dialysis dose is a necessary element to preserve the nutritional 

status of ESRD patients. However, increasing the frequency of dialysis to daily, despite 

allowing for a liberalization of alimentation, does not seem to improve the nutritional 

status of malnourished ESRD-HD patients (1). Daily dialysis reduces the extracellular 

body water but is unable to positively modify the nutritional status of ESRD-HD patients 

(188). In another study, overnight dialysis was found to be able to increase protein 

intake, without, however, demonstrating any positive effects on body composition within 

a year (189). 

 

9. Summary 
 

Protein-energy wasting is found in approximately 25% of ESRD-HD patients and has a 

major impact on survival.  

Present data show that: 1) nutritional support, preferably in the form of ONS, is able to 

improve nutritional status; 2) morbidity and mortality can be reduced when improvement 

of nutritional status, as assessed by a transthyretin increase of 30 mg/l, is obtained 

during nutritional support. Early administration of nutritional support and rational timing 

of ONS consumption may improve the efficacy of nutritional support. 
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